
Enhancing the Network EmbeddingQuality
with Structural Similarity

Tianshu Lyu
Peking University

Department of Machine Intelligence
lyutianshu@pku.edu.cn

Yuan Zhang
Peking University

Department of Machine Intelligence
yuan.z@pku.edu.cn

Yan Zhang
Peking University

Department of Machine Intelligence
zhy@cis.pku.edu.cn

ABSTRACT
Neural network techniques are widely used in network embedding,
boosting the result of node classification, link prediction, visualiza-
tion and other tasks in both aspects of efficiency and quality. All the
state of art algorithms put effort on the neighborhood information
and try to make full use of it. However, it is hard to recognize core
periphery structures simply based on neighborhood.

In this paper, we first discuss the influence brought by random-
walk based sampling strategies to the embedding results. Theo-
retical and experimental evidences show that random-walk based
sampling strategies fail to fully capture structural equivalence. We
present a new method, SNS, that performs network embeddings
using structural information (namely graphlets) to enhance its qual-
ity. SNS effectively utilizes both neighbor information and local-
subgraphs similarity to learn node embeddings. This is the first
framework that combines these two aspects as far as we know, pos-
itively merging two important areas in graph mining and machine
learning. Moreover, we investigate what kinds of local-subgraph
features matter the most on the node classification task, which
enables us to further improve the embedding quality. Experiments
show that our algorithm outperforms other unsupervised and semi-
supervised neural network embedding algorithms on several real-
world datasets.
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1 INTRODUCTION
Network (or graph) is a group of interconnected nodes and contains
a wealth of information on the relationships between every pair
of nodes. The analysis of graph is required in almost every field,
for instance, online social network [4], biological research [23],
credit rating [9] and so on. Birds of a feather flock together and
people always have certain characteristics in common with their
friends surrounded by. Therefore, researchers naturally utilize the
neighborhood information of one node to predict its category.

Unsupervised network embedding algorithms try to preserve
the local relationships of each node in the graph. IsoMap [22], LLE
[17] and Laplacian eigenmaps [1] are three classic dimensional-
ity reduction and data representation algorithms. Finding the k
nearest neighbors is the key step of these three algorithms. Clas-
sic algorithms can hardly tackle real networks due to the huge
computational complexity of eigen-decomposition.

DeepWalk [15] first introduces deep learning techniquesword2vec
to the network embedding task. The authors pioneered the similar-
ity between random walks and natural language. Later, more work
[2, 7, 19, 28] is presented to improve DeepWalk by extending the
definition of neighborhood and capturing neighborhood informa-
tion from different levels of scope, namely first-order proximity,
second-order proximity and higher-order proximity. Using random
walks to capture the local structure is truly a neat idea, which makes
it possible to build representations of big networks.

Although neighbors have been proved to be very significant fea-
tures in all the state-of-art network embedding algorithms, Struc-
tural Similarity plays an irreplaceable role in various tasks ranging
from node classification to visualization. Figure 1 shows two ex-
treme cases when classifying nodes. Figure 1a is the classic way
which is adopted by most algorithms. Nodes will be predicted to
have same labels if they share many friends and connect with each
other closely. The strategy focuses on neighbors. On the other hand,
Figure 1b shows another strategy, that is dividing nodes by their
structural similarity, namely structural equivalence defined in [7].
There are three groups altogether, core nodes, peripheral nodes
and hub nodes under this criteria for network partition. These dif-
ferent starting points induce different definitions of similar nodes:
(1) Densely connected nodes or (2) Nodes with similar network
positions.

Most state-of-art algorithms, unfortunately, only concern
about densely connected nodes. These two strategies are not in
conflict but complementary, each with its own sphere of compe-
tence. For instance, if the node labels are about customers’ interests,
although the structure knowledge would contain invaluable in-
formation, blindly relying on it is not a good idea. Neighbors can
provide much more reliable indications than structure similarity

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

147

https://doi.org/10.1145/3132847.3132900
https://doi.org/10.1145/3132847.3132900


(a) (b)

(c)

Figure 1: In (a) and (b), if two nodes are connected by dot-
ted line, it means that there are a lot of intermediate nodes
between them. The color of the node indicates its group. (a)
and (b) present two cases that classifying nodes from two dif-
ferent fundamental angles. In (a), tightly connected nodes
are in the same group. In (b), nodes with similar structural
position are grouped into one partition. (c) is the Graphlet
Degree Vector (GDV) of node 0,2,8 in (b). We only show 14
dimensions of each node. E (·, ·) is the Euclidean distance be-
tween two nodes.

does. If the labels are about the social status, topological informa-
tion does matter. The most sensible approach is to make a balance
between these two strategies.

Structural equivalence is being discussed not only in social role
mining task [3], but in recent network embedding algorithms as
well [7]. We support the motivation that both kinds of similar
nodes should be taken into consideration. However, we argue that
embedding algorithms simply relied on random-walk sam-
pling are not capable of capturing Structural equivalence ef-
fectively. In this paper, we propose a framework SNS considering
both Structural and Neighborhood Similarity. It can be used to
refine all the word2vec-based network embedding algorithms.

We conclude three main contributions of our research:

(1) We investigate the relation between random-walk based
sampling strategies and network embedding results theo-
retically and experimentally and point out the weakness
(overestimation) of random-walk based sampling.

(2) We propose a general and robust neural network frame-
work that can effectively utilize both neighbor information
and local-subgraph similarity to learn node embeddings.
This is the first framework that combines these two aspects
as far as we know.

(3) We conduct some experimental studies to gain insight
about how to make a rational use of structural information.

2 RELATEDWORK AND BACKGROUND
2.1 Network Embedding
Networks contains rich information of which, however, we cannot
make full use easily and quickly. Algorithms on graphs, even those
as simple as calculating distances between any pairs of nodes, are
usually costly. Representation learning can help to extract useful
information and transform network data into an easy-used one. The
obtained network embeddings can be used as input features inmany
downstream tasks such as classification and link prediction, which
obviates the need for complicated and time-consuming methods
directly applied on graphs. We refer the reader to [6] for more
comprehensive details.

Traditional methods [20, 21] mainly focus on dimension reduc-
tion. By the techniques of matrix factorization, traditional methods
project the adjacency matrix to a low-dimension space. As this kind
of algorithms are first designed for general high-dimension data,
they do not fit the typical network data. Networks are sparse at
most time and node degree follows power-law distribution. The
optimization from a global view cannot provide a satisfactory re-
sult for classification and other downstream applications. Just as
discussed in Section 1, local information, namely neighborhood, is
much more significant than global information.

Neural network embedding algorithms attract many attentions
as the popular model, word2vec, in natural language processing
seems to perfectly fit this task and achieves much better effects than
classic methods do. The main reason is that the word frequency
follows a power law distribution, just as the degree distribution in a
graph. Besides homophily is pervasive in both languages and graphs,
which means that both words and nodes can be predicted by their
surrounding words and nodes. The difference between the state-
of-art neural network based algorithms lies in the neighborhood
sampling strategies. DeepWalk [15] uses depth-first search in order
to sample the neighborhood of the target node. The depth is set
to 2 by default. GraRep [2] also uses DFS but the depth is larger.
LINE [19] uses breadth-first search as well as depth-first search.
The number of step are all constrained below two. node2vec [7] also
uses both two kinds of search methods and finds the balance point
by semi-supervised learning. It selects the optimal balance point
with grid search method, which is time-consuming. Furthermore,
sampling strategy based on biased random walks is slower than the
unbiased one. Obviously, none of these algorithms take structural
similarity into consideration. SDNE [24] is not based on word2vec
framework but deep autoencoder instead. It has the same goal as
LINE does, considering both first-order proximity and second-order
proximity.

GraRep [2] and node2vec [7] discuss local structure and struc-
tural equivalence. However, it is questionablewhether the structural
similarity is actually used during the learning process. Instead, they
control the sampling process and capture neighborhood informa-
tion from different levels of scope. Details will be discussed in the
following sections. Our framework is the first to directly leverage
local-subgraph information to learn network embedding.
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Figure 2: Graphlets with 2-5 nodes and automorphism orbits
[8]. Nodes of the same color belong to the same orbit within
that graphlet.

2.2 Structural Similarity
Computing similarities between structured objects (network) is a
hot topic in recent years. Methods are mainly based on graphlets,
subtree patterns and random walks [25]. In the network embedding
task, we focus on nodes rather than the whole network structure,
which means that we need a metric describing the structural char-
acteristics of a single node. This topic has been given much con-
sideration in the real fields such as biology and social science [26].
We first introduce graphlets and graphlet-based network distance
measures.

Graphlets are small, connected, non-isomorphic, induced sub-
graphs of a big graph. As shown in Figure 2, there are altogether
30 graphlets with 2-5 nodes. Orbit indicates different node position
of the graphlets. Symmetrical nodes have the same orbit number
and there are 73 orbits of 30 graphlets. The Graphlet Degree Vector
(GDV) of a node generalizes the notion of a node’s degree into a
73-dimensional vector, of which each components represents the
number of times node n is touched by a graphlet at orbit i (where
i ∈ [1, 73]). If i equals 0, the number equals its degree. The struc-
tural similarity between nodes is denoted as the Euclidean distance
of their GDV. In Figure 1c, we calculate the GDV of node 0,2,8 in
Figure 1b for example. We only show 14 dimensions of each node,
corresponding to two 3-node graphlets and six 4-node graphlets.
E (·, ·) denotes the Euclidean distance between two nodes’ GDV,
which can describe the structural similarity clearly. Besides Eu-
clidean distance, GDV distance can also be defined in other forms,
for instance, Spearman correlation.

There are many graphlet counting algorithms that can provide
precise results on small graph and approximate results on big graph
with a quick speed. In this paper, we use orca [8] to help us calculate
GDV of each node. The code is available on the authors’ website.

3 RANDOM-WALK BASED SAMPLING
Network embedding algorithms based on random walk preserve
higher-order proximity between nodes by maximizing the probabil-
ity of occurrence of subsequent nodes in fixed length randomwalks.
In this section, we take a deeper look at the sampling strategy based
on random walks and the proximity captured by random walks.

Authors of [15] give an analogy for a word and its context in
natural language to the target node along with its neighbors in a
graph. The learning process leverages the co-occurrence probability
of the nodes that appear within a window in a random walk. Node
pairs with high co-occurrence probability are regarded as neighbors.
As the size of window is usually no less than two, we call this kind
of neighbors as higher-order proximity. We denote the probability
that node i and j are successively visited at an interval of r steps as
P (i, j, r ).

Consider an undirected graphG with N nodes andm edges. The
adjacency matrix A is symmetric and the entries equal 1 if there is
an edge between two nodes and 0 otherwise. Vector d = A1, where
1 is a N × 1 vector of ones and each entry of d is the node degree.
Graph G has an associated random walk in which the probability
of leaving a node is split uniformly among the edges.

pt+1 = ptD−1A ≡ ptM, (1)

where p is the probability vector and D is the diagonal matrix of
degree: D = diaд(d). M is the transition matrix. Given by π = πM,
the stationary distribution of this Markov chain is π = d⊤/2m,
P (i ) = di/2m.

For a walk starting at node i , the probability that we find it at j
after r steps is given by

P (j, r |i ) = [Mr]ij,

P (i, j, r ) = P (j, r |i )P (i ) =
di
2m

[Mr]ij ∝ [AMr−1]ij. (2)

Equation 2 demonstrates that the co-occurrence probability of
two arbitrary nodes i and j is mainly decided by the degree of
the nodes in the path between i and j and has nothing to do with
the degree of i or j. Note that the path length is restricted to the
window size. Apparently, among all the intermediate nodes in the
feasible path between i and j, nodes with smaller degree and in
shorter path contribute more to the co-occurrence probability. To
put it more generally, two nodes are regarded as neighbors if the
connection between them is strong and direct. As shown in Figure
3, the more short feasible paths between two nodes (strong) and
the lower degree the intermediate nodes are (direct), the higher the
co-occurrence probability is.

In the learning process, nodes with similar neighborhood will
have similar latent representations. The scope of neighborhood
is decided by the size of window. Two nodes in the network sep-
arated by distance longer than the window size have no chance
to calculate the mutual similarity. In other words, random-walk
based sampling strategy only captures the higher-order proximity
within the neighborhood of the target node. Besides, the higher-
order proximity of two nodes is mainly determined by how strong
and direct the connections are. It is not capable of capturing the
structural equivalence over the whole graph.

Grover et. al. propose a more general method, node2vec [7],
which simulates biased random walks by introducing two param-
eters p and q and controlling the search procedure interpolating
between BFS and DFS. These two parameters actually modify the
transition matrixM. As stated in the last paragraph, smaller return
parameter p encourages stronger connections between neighbors.
Smaller in-out parameter q, on the other hand, encourages more
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Figure 3: Using random-walk based sampling strategy, two
nodes, i and j, are more likely neighbors if the connections
between them are (a) strong: a number of feasible paths
and (b) direct: the intermediate nodes have few connections.
Nodes in this figure also connect with other nodes that are
not shown in this figure. These kind of edges are denoted by
dotted lines.

direct connections. This work defines a flexible notion of neigh-
borhoods and we argue that (1) the strength and directness of con-
nections should not be seen as structural equivalence and (2) any
topological information outside the window cannot be captured.

In Section 6.1, we visualize the embedding results provided by
DeepWalk, node2vec and our proposed algorithm, demonstrating
our point of view experimentally.

4 PRE-PROCESSING STEP: TO OBTAIN THE
STRUCTURALLY SIMILAR NODES

Now that random-walk based sampling strategies cannot capture
structure equivalence, we turn to other graph mining techniques
for additional capabilities. In this section, we discuss the details that
howwe obtain the local-subgraph information in the pre-processing
step and use it in the network embedding task.

Peripheral orbits are informative. In Section 2.2, we have
presented the use of graphlets and orbits. The number of orbits
grows quickly as the size of graphlets increases. Too many features,
however, will result in over-fitting and not all orbits contribute
equally to a certain task. Therefore, we evaluate the importance of
different orbits on the node classification task [5] with the help of
Random Forest [14].

Random Forest consists of a number of decision trees. In the
decision trees, every node is a condition on a single feature, designed
to split the dataset into two parts so that similar response values end
up in the same set. Impurity is to measure the homogeneity of the
target variable within the subsets. For classification, it is typically
either Gini impurity or information gain. Thus when training a
tree, it can be computed how much each feature decreases the
weighted impurity in a tree. For a forest, the impurity decreased
from each feature can be averaged and we call this measure feature
importance. Note that features with more categories and with less
correlated features are considered to be more important when using
the impurity based ranking.

We use random forest implemented by sklearn [14] and calcu-
late the orbit importance Io as stated before. The experiments are

Table 1: The relative importance of the orbits RIo of the node
classification task on BlogCatalog

orbit RI% orbit RI% orbit RI% orbit RI% orbit RI%

0 0.05 1 21.18 2 1.79 3 0.14 4 84.58
5 62.26 6 95.38 7 10.94 8 21.27 9 81.94
10 63.48 11 8.50 12 41.98 13 6.15 14 3.71
15 92.27 16 76.27 17 85.71 18 86.70 19 93.90
20 82.76 21 62.11 22 86.08 23 20.55 24 86.28
25 83.70 26 65.51 27 88.68 28 81.02 29 82.77
30 63.89 31 100.00 32 76.21 33 20.14 34 75.33
35 95.19 36 77.29 37 82.30 38 44.18 39 94.31
40 77.64 41 65.50 42 18.75 43 80.58 44 11.52
45 87.21 46 80.75 47 58.46 48 65.70 49 83.55
50 24.42 51 76.65 52 80.50 53 43.72 54 85.05
55 15.38 56 91.93 57 66.20 58 14.91 59 77.65
60 55.84 61 13.73 62 74.85 63 31.37 64 41.12
65 83.61 66 59.60 67 16.18 68 39.53 69 7.20
70 49.11 71 14.99 72 12.14

repeated on several datasets. Table 1 shows the relative importance
of each orbits RIo on BlogCatalog. We can get similar observations
on the other datasets.

RIo =
Io

max
0⩽i⩽72

(Ii )
× 100%

We observe that orbit 0 (node degree) is of little importance from
the perspective of node classification. A more general idea is that
peripheral orbit (orbits with less degrees) is more important than
the core orbit (orbits with more degrees) for any graphlet. For
instance, orbit 1 is more important than orbit 2 in G1. InG12, orbit
24 has the greatest importance while orbit 26 has the smallest one.
This can be verified by the Table 1 and Figure 2.

One reason of this interesting phenomenon might be the depen-
dency between graphlet degrees. Take any node with more than
two neighbors as an example, it can form either G1 or G2 with any
two of its neighbors. If we denoteCi as the graphlet degree of orbit
i , we then have (C0

2
)
= C2 +C3.

Core orbits are consequently more likely to be redundant, as it
might be expressed by the sum of some peripheral orbits.

Because of the analysis above, peripheral orbits should weigh
more than core orbits when we calculate the similarity of two GDVs.

Limit the scope of similar nodes. In order to cooperate the
network embedding task, we try to leverage local-subgraph simi-
larity information. For a target node, its local neighbors and struc-
turally similar nodes are involved in the learning process. Struc-
turally similar nodes can be chosen from the whole network or
only the neighborhood of the target node. The scope of structurally
similar nodes to be considered depends on the real task. In certain
circumstance, nodes connected together in the network are more
likely to have the same labels than those without connections be-
tween them. The maximum step between the similar node and the
target node is supposed to be small. However, there are also cases
where structural similarity is the major factor and the maximum
step has to be bigger.
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Figure 4: The framework of CBOW. w1,w2, · · ·,wW are the
context words of the target word. The vocabulary size is V .
The window size isW . W is the weight matrix between the
input layer and the hidden layer. Each row ofW is theN -dim
word vector vw . And similarly, v′w is from W′.

In the pre-processing step, graphlet counting algorithms first
produce Graphlet Distribution Vector for every node. Next for each
node, find its K nearest neighbors in the GDV space, i.e. the K
neighboring nodes which have the smallest cosine distance from it.
Note that searching structurally similar nodes has to be restricted
in the higher order Sth degree neighborhood of the target node
N S
vi as:

N S
vi = {vj | Ai j = 1 ∨ A2

i j ⩾ 1 ∨ · · · ∨ AS
i j ⩾ 1}.

This is the set of all nodes at a distance no more than S from target
nodevi . Search results are preserved in a sparse matrix S, where si j
equals the similarity score if j is one of the K nearest neighbors of
i and 0 otherwise (si j ∈ [0, 1) and

∑
j si j = 1). There are altogether

K non-zero numbers in each row of the matrix S. To sum up, the
pre-processing is controlled flexibly from the following five aspects:
(i) The metric to evaluate the similarity of GDV.
(ii) O : The number of orbits to be considered.
(iii) R: The weight of different orbits when calculating the similar-

ity of GDV.
(iv) K : The number of the most similar nodes.
(v) S : The maximum step between the similar node and the target

node.

5 NETWORK EMBEDDING POWERED BY
STRUCTURAL SIMILARITY

We propose a neural network architecture that leverages both local
connected neighbors and topological information to learn network
embedding.

5.1 CBOWModel with Negative Sampling
Although our framework can be used to refine all the word2vec-
based network embedding algorithms, we use CBOW [12] as the
basis of our framework due to the space limitations. Comparing
with skip-gram model, CBOW model performs better on dataset
with short sentences but high number of sample sets (larger dataset).

Figure 5: Combine the structural information with the net-
work embedding. Given space limitations, we only demon-
strate the complete neural network architecture of wn . For
the otherW − 1 context words, they also have new architec-
tures aswn does.

In the field of NLP, similar words have similar contexts and
CBOW aims to predict a word by its context. The loss function is as
follows. C is the vocabulary set andw is the word to be predicted.

L =
∑

w ∈C
logp (w |Context (w )).

CBOW takes the one-hot encoder of the context wordswI as input
and the average of the context word vectors as hidden layer, where
W is the number of context words of wordw and vwi is the vector
of wordwi .

h = vwI =
1
W

(vw1 + vw2 + . . . + vwW ).

wO is the output of CBOW and yj is the j-th unit of the output
layer. Note that vw and v′w are the input vector and output vector
of the wordw respectively.

p (w |Context (w )) = yj =
exp(v′Tw j

vwI )∑V
j′=1 (v

′T
w j

vwI )
.

The softmax function is very difficult to optimize because of the
huge amount of calculation in the denominator. One of the effective
solutions is negative sampling, which approximates the softmax
function by performing logistic regression to k noise samples. As
shown in [12], the probabilistic distribution for the negative sam-
pling process is a unigram distribution raised to the 3

4 th power. We
denote Pn (w ) as the noise distribution and σ is the logistic function.
Wneд is the set of k samples sampled based on Pn (w ).

Pn (w ) =
U (w )

3
4

Z
,

L = logσ (v′TwO
vwI ) +

∑
w j ∈Wneд

logσ (−v′Tw j
vwI ).

5.2 Enhanced by the Structural Information
Branch

We propose a new framework in order to boost the learning process
with the structural similarity information. Figure 4 presents the
framework of CBOW. We take the dotted portion in Figure 4 as
an example and its corresponding new architecture is showed in
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Figure 5. In this model, the target node is predicted by its neighbor-
hood (contextual information, referred to as neighborhood branch),
as well as the structurally similar nodes nearby (referred to as
structural information branch). As discussed in the last section, the
sparse similarity score matrix S is derived from the pre-processing
step. Each row of S contains K non-zero items and si j is referred to
as the similarity score of node i and node j. Neighborhood branch
and structural information branch share one embedding matrix W.
Each row of W represents the input embedding vector v of a node.
The corresponding vector of structural information is written as

vsim-n =
V∑

m=1
snmvwm .

The similarity score snm is regarded as the weight assigned to the
vector ofwm , one of the top-K topologically similar nodes ofwn .

An aggregated representation of the context of the target input
node is

vwI =
1
W

W∑
n=1

(c1 (deд(wn ))vwn + c2 (deд(wn ))vsim-n ),

where c1 and c2 are the parameters regulating the proportion of the
two kinds of information (c1, c2 ∈ (0, 1)). Usually, the neighborhood
of a high degree node can provide enough information for label
prediction. The node with few edges, however, depends much on
structural information and less on its neighborhood. Thereby, the
value of c1 is larger than c2 for high degree nodes and vise versa.
Nodes are sorted in descending order of node degree and divided
into C levels. Nodes at the same level share the same c1 and c2.

In conclusion, the model takes the weighted average of the node
vectors of both the target node’s neighbors and their similar nodes
as input.

5.3 Learning Process
Matrix S,W,W′ and the value of c1, c2 are updated in the back-
propagation process. The partial derivative of L with regard to the
net input of the output unitw j is as follows:

∂L

∂v′Tw j
vwI

=



σ (v′Tw j
vwI ) − 1, if w j = wO ;

σ (v′Tw j
vwI ), if w j ∈ Wneд .

= σ (v′TwO
vwI ) − tj .

where tj is the indicator. Using the chain rule, we further get:

∂L

∂v′w j

=
∂L

∂v′Tw j
vwI

·
∂v′Tw j

vwI

∂v′w j

= (σ (v′TwO
vwI ) − tj )vwI ,

∂L

∂vwI

=
∑

w j ∈{wO }∪Wneд

∂L

∂v′Tw j
vwI

·
∂v′Tw j

vwI

∂vwI

=
∑

w j ∈{wO }∪Wneд

(σ (v′TwO
vwI ) − tj )v

′
w j ≡ ∆.

The corresponding update equation is as followed:

v′(new )
w j = v′(old )w j − η(σ (v′TwO

vwI ) − tj )vwI ,

c
(new )
1 = c

(old )
1 − ηvwi∆, c

(new )
2 = c

(old )
2 − ηvsim-i∆,

v(new )
wi = v(old )wi − ηc1∆, v(new )

w j = v(old )w j − ηc2si j∆,

s
(new )
i j = s

(old )
i j − ηvw j∆.

Note that matrixW is updated twice in one iteration, that is, one
round by the nodes in the neighborhood and the other round by
the topologically similar nodes. When the learning process is over,
we take the matrix W as the learned node representations.

5.4 Variants
We briefly discuss some variants of our framework here. For differ-
ent tasks and networks, we can choose proper variants.

Whose similar nodes are they? In our framework, we lever-
age the similar nodes of the context nodes rather than the target
node. However, the latter plan is also feasible. The difference mainly
lies in the scope of similar nodes to be chosen from. If we want to
choose the nodes from a bigger scope (the maximum step away
from the target node is 3 or bigger), the latter plan will lead to huge
computational complexity of the pre-processing step. The current
plan, on the contrary, achieves the goal by making the window-size
W bigger. Larger window-size does not influence the efficiency
significantly. Problem for the current plan is that the similarity is
not transitive in some cases. Which plan is better might depend on
the assortativity of the network.

Fixed value of c1, c2 and similarity matrix. In our frame-
work, c1, c2, and S are updated in the learning process. Setting
proper initial values and making them fixed can also achieve a good
performance. Moreover, fixed parameters accelerate the learning
process. The trick is setting bigger c1 and smaller c2 for high de-
gree nodes and vise versa. The similarity scores seem to be less
important. If node j is one of the top-K topologically similar nodes
of node i , then we set si j = 1/K . Otherwise, si j = 0.

6 EXPERIMENTS
In this section we first visualize a small network using DeepWalk
[15], node2vec [7] and our proposed algorithm separately, which
demonstrates the arguments in Section 3 visually. Moreover, we
show the performance of different network embedding algorithms
onmulti-label classification task. The parameter sensitivity will also
be discussed, helping us have a deeper insight of the topological
information and the algorithm efficiency.

6.1 Case Study: Visualization in 2-D space
Les Miserables co-appearance network consists of 77 nodes and
254 edges, where node corresponds to characters showed up in Les
Miserables and edge corresponds to the co-appearance relationship.
As the network is small, it is easy to visualize. Nodes in this network
have various structural positions, making it easier to analyze dif-
ferent sampling strategies thoroughly. We compare our algorithm
with DeepWalk [15] and node2vec [7]. Both of them are classic
network embedding algorithm with random-walk based sampling
strategy. Node2vec claims to be able to find structural equivalence
when the parameters p and q are properly set. We use the same
settings as they reported in the paper (p = 1,q = 2). DeepWalk is
a special case of node2vec with p = 1 and q = 1. For simplicity,

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

152



Figure 6: Visualization of Les Miserables co-appearance net-
work using a force-directed layout: ForceAtlas2 [10].

Figure 7: We use DeepWalk [15] to learn the latent repre-
sentation of Les Miserables network (p = 1,q = 1,d = 16).
Nodes are mapped to the 2-D space using the PCA package
[13] with learned embeddings as input.

the window size of these three algorithms are all set to be 4, which
means that neighbors are chosen from the nodes at a distance no
more than 2 from the target node.

Figure 6 is the visualization of Les Miserables co-appearance
network using a force-directed layout: ForceAtlas2 [10]. Figure 7,
Figure 8 and Figure 9 are the learned latent vectors provided by
DeepWalk, node2vec and SNS respectively. Note that d , the dimen-
sion size of the latent space, is 16 and we use Principal Component
Analysis to project the vectors to 2-dimensional space. Colors of

Figure 8: We use node2vec [7] to learn the latent representa-
tion of Les Miserables network (p = 1,q = 2,d = 16). Nodes
are mapped to the 2-D space using the PCA package [13]
with learned embeddings as input.

Figure 9:Weuse SNS to learn the latent representation of Les
Miserables network. Nodes are mapped to the 2-D space us-
ing the PCA package [13] with learned embeddings as input.

nodes are uniform in Figure 6-9, making it easier for us to track
them in different figures.

As stated in Section 3, random-walk based sampling strategies
are sensitive to strong and direct connections. In Figure 6, both
node 51 (light blue) and node 56 (dark blue) are in the neighborhood
of node 26 (orange). There are many short paths between node 26
and 51, 26-51, 26-49-51, 26-54-51, 26-11-51 and etc. On the contrast,
the only two short paths between node 26 and 56 are 26-49-56 and
26-55-56. Therefore, node 26 has stronger connection with node 51
and as shown in Figure 7, the distance between node 26 and node
51 is much shorter than it between node 26 and node 56. In Figure 6,
node 11 (light purple), 16-22 (red) and 27 (light purple) are two-step
neighbors of node 30 (orange). The intermediate node 23 has much

Session 1D: Network Embedding 1 CIKM’17, November 6-10, 2017, Singapore

153



more connections than node 31 does. Therefore, in Figure 7, node
16-22 (red) are far away from node 30 (orange).

We also discuss the influence of biased random walk in Section 3
that smaller p encourages stronger connections between neighbors
and smaller q encourages more direct connections. In our exper-
iments, node2vec are set to p = 1,q = 2 and are therefore more
sensitive to strong connections. Following the discussion of Deep-
Walk, the relationship between node 26 (orange) and 51 (light blue)
is stronger compared with the one between node 26 and 56 (dark
blue). In Figure 8, we can figure that node 26 and node 51 are quite
close. The distance is much shorter than it is in Figure 7.

In Figure 6, node 1, 4-9 (light green) are structurally similar as
they all have 1 edge connected to node 0. Node 57-65, 76 (dark
green) are also a group of similar nodes as they all connect to each
other and thus form a clique. In Figure 7 and Figure 8, we find that
the locations of these two groups of nodes are quite different. Node
57-65, 76 (dark green) are separated from the other nodes, while
node 1, 4-9 (light green) can hardly separate from the surrounding
nodes. This difference proves that whether the random-walk based
sampling strategy is biased or not, it is not capable of finding out
the nodes with structural equivalence under any circumstances.
The reason why node 57-65, 76 are away from other nodes is that
the connections between them are much stronger and more direct
than the rest. Other nodes can hardly be visited in the random
walks started from node 57-65 and 67. Node 1, 4-9, on the contrary,
do not have such local structure and the structural similarity of
this group of nodes can not be captured by random-walk based
sampling algorithms.

In Figure 9, these two groups of nodes are all separated from
the rest of nodes. This improvement attributes to our consideration
of graphlets distribution. Note that although nodes 10, 13-15 (dark
purple) and etc. also only have one edge as node 1, 4-9 do, their local
structural position are quite different in our opinion. For example,
node 67 (yellow) connects to node 57 in Figure 6 and node 57-65
and 76 form a clique as we stated before. We consider node 67 is
more similar with node 57-65 and 76. Node 13-15 all have one edge
connected to node 11, which is the 2-step neighbor of node 1, 4-9.
We consider node 10, 13-15 are similar with node 1, 4-9. These kinds
of relationships are all reflected in the latent space as shown in
Figure 9.

Through all the demonstrations above, we try to prove that
random-walk based sampling strategies are not good at mining
structural equivalence. The properties of random walks constrain
the capability of this kind of algorithms. They only capture the
strength and directness of the relationships between nodes, rather
than the exact topological information of every node. SNS, with the
help of graphlet distribution vector, is capable to mine structural
equivalence.

6.2 Datasets and Baselines
In the following experiments, we choose three datasets that accord
our starting-point. They all exist a mix of homophily and structural
equivalences [7].

BlogCatalog [27] is the social blog directory which manages the
bloggers and their blogs. The network depicts the contact between
users and the user labels represent their interests. Users tend to

Sample Portion
0 0.5 1

M
ic

ro
 F

1
 S

c
o

re

15

20

25

30

35

40

45
BlogCatalog

Sample Portion
0 0.5 1

M
a

c
ro

 F
1

 S
c
o

re

5

10

15

20

25

30

Sample Portion
0 0.5 1

M
ic

ro
 F

1
 S

c
o

re

10

15

20

25

30
PPI

Sample Portion
0 0.5 1

M
a

c
ro

 F
1

 S
c
o

re

5

10

15

20

25

Sample Portion
0 0.5 1

M
ic

ro
 F

1
 S

c
o

re

30

35

40

45

50

55

60
POS

Sample Portion
0 0.5 1

M
a

c
ro

 F
1

 S
c
o

re

5

10

15

20

25

Spectural Clustering LINE DeepWalk node2vec SNS

Figure 10: The Macro-F1 Score and Micro-F1 Score of differ-
ent algorithms on varying the sampling portion used for
training.

have same hobbies as their close friends. Strangers but with similar
structural positions are also possible. The network contains 10,312
nodes, 333,983 edges and 39 labels.

Protein-Protein Interactions [18] is a subgraph of the PPI
network for Homo Sapiens. Labels stand for the protein biological
states. The network contains 3,890 nodes, 76,584 edges and 50 labels.

POS [11] is a co-occurrence network of words appearing in the
first million bytes of the Wikipedia dump. A part of speech (POS)
is a category of words which have similar grammatical properties.
Words that always show together have a high probability to be
similar meaning. And words with similar network structure also
tend to be with the same part of speech. The network contains 4,777
nodes, 184,812 edges and 40 labels.

We choose a classic method aiming at dimension reduction and
three representative neural network embedding algorithms as base-
lines.

Spectral Clustering [21] is based on matrix factorization and
aims at minimizing Normalized Cut. We set d = 500 , the same
setting in [21].

DeepWalk [15] is the first embedding algorithm that brings the
deep learning technology. It is an unsupervised learning algorithm.
It captures the neighborhood information of each node by random
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walks and uses skip-gram model with negative sampling. We set
d = 128, r = 10, l = 80, k = 10, the same setting in [15].

LINE [19] defines a loss function based on 1-hop and 2-hop
relational information. It learns d/2 dimensions of the node vector
by these two parts of information respectively and combines them
directly as the final output. In a supervised learning task, it finds
the weighting of dimensions based on training data and achieves a
better performance. In our experiments, we try the unsupervised
mode of LINE [19] and set d = 128, r = 10, l = 80, k = 10, the same
setting in [19].

node2vec [7] simulates biased random walks over the underly-
ing network. It uses parameter p and q to balance the BFS strategy
with DFS strategy.DeepWalk is a special case of node2vec where
p = q = 1. node2vec is a semi-supervised algorithm and it need
10% labeled data of the network to decide the value of p and q. We
use the value of p and q as showed in the authors’ paper [7].

The settings of our algorithm SNS is as follows: in the pre-
processing step, K = 5, S = 1, O = 14, R = 9. In the learning
step, we use the same parameters as DeepWalk does and C = 5. In
the pre-processing step, we use orca [8], a very efficient algorithm
for graphlet enumeration.

As reported in the paper [8], on a desktop computer (Intel Core
2, 2.67 GHz), orca only takes 2.5s to count the four-node graphlets
of a network with 25,368 nodes and 75,004 edges. SNS spends more
time than DeepWalk does, as more parameters are involved in
the learning process. The sampling step of node2vec, similarly, is
very time-consuming, comparing with the normal random-walk
sampling used by DeepWalk and SNS.

6.3 Multi-label Classification
This task uses the exact same datasets and experimental procedure
as presented in [7]. The node vectors are the input to a one-vs-
rest logistic regression implemented by sklearn [14]. We sample a
portion of the labeled nodes as training data and use the rest nodes
as test data. This process is repeated 10 times, and we show the
average Micro-F1 Score and Macro-F1 Score in Figure 10.

We can easily figure out that SNS has advantages over other
algorithms on these three datasets. Spectural Clustering is a com-
petitive algorithm only on BlogCatalog dataset. DeepWalk seems to
be the most stable algorithm among the baselines. This performance
suggests that different neighborhood sampling strategies are not
so reliable in different fields. Designing special sampling strategies
will result in limited application scope. In BlogCatalog dataset, the
advantage of SNS is not as evident as it in the other two datasets.
Neural network based algorithms have close scores. The reason
might be that node labels of BlogCatalog datasets depend more on
the node neighborhood. In PPI dataset and POS dataset, the obvious
advantages have to be attributed to the help of structural similarity
information.

Note that node2vec has to utilize supervised data to decide the
best parameter, while SNS is unsupervised and achieves better per-
formance. This illustrates that our intuition, combining the struc-
tural similarity with neighborhood information, is an important
knowledge of multi-label classification task.
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Figure 11: Parameter Sensitivity of SNS on the BlogCatalog
network.

6.4 Parameter Sensitivity
We test our algorithmwith different settings on BlogCatalog dataset.
The results are similar for the other datasets. The first two sub-
figures of Figure 11 focus on the settings of structural similarity.
S stands for the maximum step between the similar node and the
target node. R stands for the weighting factors between peripheral
orbits and core orbits when calculating the GDV distance.O stands
for the number of orbits to be considered (the dimension of GDV).
If the node labels is relevant to the node distance in the network,
bigger S will bring many nodes far from the target node and have a
negative effect on the label prediction task. As discussed in Section
4, peripheral orbits are more informative. Thereby, they weigh more
than core orbits. The number of orbits does not matter much. Using
more orbits to calculate the topological similarity between nodes
does not contribute to a better result. Fourteen orbits from graphlets
with 2-4 nodes is enough.

The rest sub-figures are about the parameters of random walks.
Window size k has little effect on the results. We attribute the
good performance of small window size to the help of topological
information. A big window size brings much noisy information
and makes the embedding quality worse. Number of walks per
node r and walk length l have relatively large impact. These two
parameters control the scale of training data. Increasing dimension
d improves the result. When d is bigger than 100, the improvement
is less obvious.
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6.5 Discussion: Local Versus Global
The proposed model SNS is capable of capturing both local and
global structural characteristics. We are going to discuss about
their feasibility and practicality. Utilizing global information of the
network is a difficult field and we have to acknowledge that the
computational cost of SNS is huge when S is a large value. Some
related work [2, 16] suffers from the same drawback. A possible
way to improve the performance might be designing heuristics and
limiting the search scope. On the other hand, it seems that in most
real tasks global information is less useful than local information.
Long distance, in the network indicates the potential gaps of node
features. Structural similarity is less discriminative than spatial
proximity to certain extent. In conclusion, local structural informa-
tion is easy to be captured and more commonly used in real tasks.
Meanwhile, we are looking forward to the new network embedding
algorithms effectively capturing global structural information.

7 CONCLUSION AND FUTUREWORK
In this paper, we analyze the characteristics and the downsides
of random-walk based sampling strategies and propose a network
embedding framework combining both structural similarity and
neighborhood information. We capture the structural information
by graphlet degree vector and make full use of it in our learning
framework. This method alters the neural networks used by the
word2vec algorithms to contain a topological information factor,
introducing new layers with several tunable parameters. SNS is
the first framework that leverages network structure directly and
makes it possible no matter in local area or in a global scope of the
network. The experiments show that structural similarity does help
in the node classification task.

Tasks, including node classification, link prediction and visualiza-
tion, are all relevant with local network structure. If there exists any
task that has to use global information of the network, algorithms
based on random walks are not suitable any more. In conclusion,
future work includes finding new application scenarios and new
framework supporting capturing global network information.
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