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Abstract. Node centralities such as Degree and Betweenness help detect-
ing influential nodes from local or global view. Existing global centrality
measures suffer from the high computational complexity and unrealistic
assumptions, limiting their applications on real-world applications. In this
paper, we propose a new centrality measure, Node Conductance, to effec-
tively detect spanning structural hole nodes and predict the formation of
new edges. Node Conductance is the sum of the probability that node i is
revisited at r-th step, where r is an integer between 1 and infinity. More-
over, with the help of node embedding techniques, Node Conductance is
able to be approximately calculated on big networks effectively and effi-
ciently. Thorough experiments present the differences between existing
centralities and Node Conductance, its outstanding ability of detecting
influential nodes on both static and dynamic network, and its superior effi-
ciency compared with other global centralities.
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1 Introduction

Social network analysis is used widely in social and behavioral sciences, as well as
economics and marketing. Centrality is an old but essential concept in network
analysis. Central nodes mined by centrality measures are more likely to help
disseminating information, stopping epidemics and so on [19,21].

Local and global centralities are classified according to the node influence
being considered. Local centrality, for instance, Degree and Clustering Coeffi-
cient are simple yet effective metrics for ego-network influence. On the contrary,
tasks such as information diffusion and influence maximization put more atten-
tion on the node’s spreading capability, which need centrality measurements at
long range. Betweenness and Closeness capture structural characterization from
a global view. As the measures are operated upon the entire network, they are
informative and have been extensively used for the analysis of social-interaction
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networks [11]. However, exact computations of these centralities are infeasible
for many large networks of interest today. The approximately calculated cen-
tralities also do not perform well in the real-world tasks [2,6]. Moreover, these
global centralities are sometimes unrealistic as their definitions are based on
ideal routes, e.g., the shortest path. Yet, the process on the network usually
evolves without any specific intention. Compared with the ideal routes, random
walks are more realistic and easier to compute. This makes random-walk-based
centrality outperforms other metrics in the real-world tasks [19].

We propose a new centrality, Node Conductance, measuring how likely is a
node to be revisited in the random walk on the network. Node Conductance intu-
itively captures the connectivity of the graph from the target-node-centric view.
Meanwhile, Node Conductance is more adequate in real applications by relax-
ing the assumption that information spreads only along ideal paths. Intuitively
speaking, Node Conductance merges degree and betweenness centralities. Nodes
with huge degree are more likely to be revisited in short random walks, and
high betweenness nodes are more likely to be revisited in longer random walks.
We further prove the approximability of Node Conductance from the induced
subgraph formed by the target node and its neighborhoods. In other words,
Node Conductance could be well approximated by the short random walks. This
insight helps us calculate Node Conductance on big networks effectively and
efficiently.

We then focus on the approximated Node Conductance, which is based on
the revisited probability of short random walks on big networks. Specifically, we
broaden the theoretical understanding of word2vec-based network embeddings
and discover the relationships between the learned vectors, network topology,
and the approximated Node Conductance.

In this paper, we positively merge two important areas, node centrality and
network embedding. The proposed Node Conductance, taking the advantages of
network embedding algorithms, is scalable and effective. Experiments prove that
Node Conductance is quite different from the existing centralities. The approxi-
mately calculated Node Conductance is also a good indicator of node centrality.
Compared with those widely used node centrality measures and their approx-
imations, Node Conductance is more discriminative, scalable, and effective to
find influential nodes on both big static and dynamic networks.

2 Related Work

Node Centrality. Centrality is a set of several measures aiming at capturing
structural characteristics of nodes numerically. Degree centrality [1], Eigenvector
Centrality [4], and Clustering coefficient [22] are widely used local centralities.
Different from these centralities, betweenness [8] and Closeness [9] are somehow
centrality measures from a global view of the network. The large computational
cost of them limits the use on large-scale networks. Flow betweenness [5] is
defined as the betweenness of node in a network in which a maximal amount
of flow is continuously pumped between all node pairs. In practical terms, these
three measures are sort of unrealistic as information will not spread through
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the ideal route (shortest path or maximum flow) at most times. Random walk
centrality [19] counts the number of random walks instead of the ideal routes.
Nevertheless, the computational complexity is still too high.

Subgraph centrality [7], the most similar measure to our work, is defined as
the sum of closed walks of different lengths starting and ending at the vertex
under consideration. It characterizes nodes according to their participation in
subgraphs. As subgraph centrality is obtained mathematically from the spectra
of the adjacency matrix, it also runs into the huge computational complexity.

Advance in NLP Research. Neural language model has spurred great atten-
tion for its effective and efficient performance on extracting the similarities
between words. Skip-gram with negative sampling (SGNS) [16] is proved to be
co-occurrence matrix factorization in fact [12]. Many works concerns the differ-
ent usages and meanings of the two vectors in SGNS. The authors of [13] seek
to combine the input and output vectors for better representations. Similarly, in
the area of Information Retrieval, input and output embeddings are considered
to carry different kinds of information [18]. Input vectors are more reflective of
function (type), while output vectors are more reflective of topical similarity.

In our work, we further analyze the relationships between the learned input
and output vectors and the network topology, bringing more insights to the net-
work embedding techniques. Moreover, we bridge the gap between node embed-
ding and the proposed centrality, Node Conductance.

3 Node Conductance (NC)

Conductance measures how hard it is to leave a set of nodes. We name the new
metric Node Conductance as it measures how hard it is to leave a certain node.
For an undirected graph G, and for simplicity, we assume that G is unweighted,
although all of our results apply to weighted graphs equally. A random walk on
G defines an associated Markov chain and we define the Node Conductance of
a vertex i, NC, as the sum of the probability that i is revisited at s-th
step, where s is the integer between 1 and oo.

NCoo (i) = > P(ili, s). (1)

The next section demonstrates that the number of times that two nodes co-occur
in the random walk is determined by the sub-network shared by these two nodes.
Node Conductance is about the co-occurrence of the target node itself and is
thus able to measure how dense the connections are around the target node.

3.1 The Formalization of NC

The graph G is supposed to be connected and not have periodically-returned
nodes (e.g. bipartite graph). The adjacency matrix A is symmetric and the
entries equal 1 if there is an edge between two nodes and 0 otherwise.
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Vector d = A1, where 1 is a n x 1 vector of ones, n is the node number,
and each entry of d is the node degree. D is the diagonal matrix of degree:
D = diag(d). Graph G has an associated random walk in which the probability
of leaving a node is split uniformly among the edges. For a walk starting at node
i, the probability that we find it at j after exactly s steps is given by

P(jli,s) = (D" A);;. (2)

NC,. denotes the sum of the probability that the node is revisited at the step s,
s is between 1 and r
NC, (i) = ¥, P(ili,s) = P, P =%I_ (D7 A), 3)
where Pj; is the entry in the i-th row and i-th column of matrix P.
Supposed that r approaches infinity, NC,, becomes a global node centrality
measure. In order to compute the infinite sum of matrix power, s = 0 is added
for convenience.

P =52 (DA =22 (D 'A)—I=(I-D 'A)"' —I=(D-A)"'D-1.

(4)
D— A, the Laplacian matriz L of the network, is singular and cannot be inverted
simply. We introduce pseudo-inverse. L;; = Zgzl AkUskU %, where A and u are
the eigenvalue and eigenvector respectively. As vector [1, 1, ...] is always an eigen-
vector with eigenvalue zero, the eigenvalue of the pseudo-inverse L is defined
as follows. NCo (i) only concerns about the diagonal of L.

Lif A #0 _ ‘
o= {35 V0 Eh= s, weal) x L di (9

where d; is the degree of node 7, the ith entry of d.

Although Node Conductance is a global node centrality measure, the Node
Conductance value is more relevant with local topology. As shown in Eq.3, in
most cases, the entry value of (D~1A)* is quite small when s is large. It cor-
responds to the situation that the random walk is more and more impossible
to revisit the start point as the walk length increases. In the supplementary
material, we will prove that Node Conductance can be well approximated from
local subgraphs. Moreover, as the formalized computation of Node Conductance
is mainly based on matrix power and inverse, the fast calculation of Node Con-
ductance is also required. We will discuss the method in Sect. 4.

3.2 Relationships to the Similar Centralities

Node Conductance seems to have very similar definition as Subgraph Centrality
(SC) [7] and PageRank (PR) [20]. In particular, Node Conductance only com-
putes the walks started and ended at the certain node. And PR is the stationary
distribution of the random walk, which means that it is the probability that
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a random walk, with infinite steps, starts from any node and hits the node
under consideration. PR = D(D —aA)~11, where the agent jumps to any other
node with probability a. The difference between PR and Eq.4 lies in the ran-
dom walks taken into account. By multiplying matrix 1, the PR value of node
i is the sum of the entries in the i-th row of D(D — aA)~!. In Eq.4, the NC
value of node i is the entry of the i-th row and i-th column. In summary, NC is
more about the node neighborhood while PR is from a global view. The differ-
ence makes PageRank a good metric in Information Retrieval but less effective
in social network analysis. After all, social behavior almost have nothing to do
with the global influence.

SC counts the subgraphs number that the node takes part in, which is equiv-
alent to the number of closed walks starting and ending at the target node,
SC(i) = Y o0 (A®);;/s!. The authors later add a scaling factor to the denomi-
nator in order to make the SC value converge, but get less interpretive. NC, on
the contrary, is easy-to-follow and converges by definition.

4 Node Embeddings and Network Structure

As the calculation of Node Conductance involves matrix multiplication and
inverse, it is hard to apply to large networks. Fortunately, the proof in our Sup-
plementary Material indicates that Node Conductance can be approximated from
the induced subgraph G; formed by the k-neighborhood of node 7. And the approx-
imation error decreases at least exponentially with k. Random walk, which Node
Conductance is based on, is also an effective sampling strategy to capture node
neighborhood in the recent network embedding studies [10,21]. Next, we aim at
teasing out the relationship between node embeddings and network structures, and
further introduces the approximation of Node Conductance.

4.1 Input and Output Vectors

word2vec is highly efficient to train and provides state-of-art results on various
linguistic tasks [16]. It tries to maximize the dot product between the vectors of
frequent word-context pairs and minimize it for random word-context pairs. Each
word has two representations in the model, namely the input vector (word vector
w) and output vector (context vector ¢). DeepWalk [21] is the first one pointing
out the connection between texts and graphs and using word2vec technique into
network embedding.

Although DeepWalk and word2vec always treat the input vector w as the
final result, context vector ¢ still plays an important role [18], especially in net-
works. (1) Syntagmatic: If word ¢ and j always co-occur in the same region (or
two nodes have a strong connection in the network), the value of w; - ¢; is large.
(2) Paradigmatic: If word ¢ and j have quite similar contexts (or two nodes
have similar neighbors), the value of w; -w; is high. In NLP tasks, the latter rela-
tionship enables us to find words with similar meaning, and more importantly,
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similar Part-of-speech. That is the reason why only input embeddings are pre-
served in word2vec. However, we do not have such concerns about networks, and
moreover, we tend to believe that both of these two relationships indicate the
close proximity of two nodes. In the following, we analyze the detailed meanings
of these two vectors based on the loss function of word2vec.

4.2 Loss Function of SGNS

SGNS is the technique behind word2vec and DeepWalk, guaranteeing the high
performance of these two models. Our discussion of DeepWalk consequently
starts from SGNS.

The loss function £ of SGNS is as follows [12,14]. Vy is the vocabulary set,
i is the target word and V¢ is its context words set, #(i, j), is the number of
times that j appears in the r-sized window with i being the target word. #(i),.
is the times that i appears in the training pairs: #(i), = Z]EVW #(1,7)r, where
w; and ¢; are the input and output vectors of i.

L= > #ig)(ogo(wi-c)+ > #G) (kY. Plueg)logo(-wi-cuey)).

i€Vw jE€EVC i€V negeVco
(6)

neg is the word sampled based on distribution P(i) = #(i)/|D|, corresponding
to the negative sampling parts, D is the collection of observed words and context
pairs. Note that word2vec uses a smoothed distribution where all context counts
are raised to the power of 0.75, making frequent words have a lower probability to
be chosen. This trick resolves word frequency imbalance (non-negligible amount
of frequent and rare words) while we found that node degree does not have such
imbalanced distribution in all of the dataset we test (also reported in Fig.2 in
DeepWalk [21]). Thereby, we do not use the smoothed version in our experiments.

4.3 Dot Product of the Input and Output Vectors

SGNS aims to optimize the loss function £ presented above. The authors of [12]
provide the detailed derivation of SGNS as follows. We define z = w; - ¢; and
find the partial derivative of £ (Eq.6 ) with respect to x: 0L/0x = #(i, ), -
o(—x) — k- #(i), - P(j)o(x). Comparing the derivative to zero, we derive that

w; - ¢cj = log(%) — log k, where k is the number of negative samples.

4.4 Node Conductance and Node Embeddings

In the above section, we derive the dot product of the input and output vectors.

Now as for a certain node i, we calculate the dot product of its input vector

and output vector: w; - ¢; = log(%)— log k. Usually, the probability is

estimated by the actual number of observations:
#(3,4)r >, P(ili, s)

#(i)r-P (i) P(i)

NC, (i)
P(i)

)—logkzlog( )—logk:log( )—logk.

(7)

wi-c; = log(
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P(i), namely the probability of a node being visited in a random walk, is pro-
portional to the node degree. Thus, we have

NC, (i) = exp(w;-¢;)-k-P(i) x exp(w;-¢;) - deg(i). (8)

In our experiments, the value of exp(w; - ¢;) - deg(i) is used as the relative
approximate Node Conductance value of node i. Actually, the exact value of
each node’s Node Conductance is not that necessary. Retaining their relative
ranks is enough to estimate their centrality.

The variants of DeepWalk also produce similar node embeddings. For exam-
ple, node2vec is more sensitive to certain local structure [15] and its embeddings
has lower capacity of generalization. We only discuss DeepWalk in this paper
for its tight connection to random walk, which brings more interpretability than
other embedding algorithms.

4.5 Implementation Details

DeepWalk generates m random walks started at each node and the walk length
is [, sliding window size is w. Node embedding size is d. We set m =80, [ =40,
w =06, and d=128. In order to compute the node embeddings, DeepWalk uses
word2vec optimized by SGNS in gensim! and preserves the default settings,
where the embeddings are initialized randomly, initial learning rate is 0.025 and
linearly drops to 0.0001, epochs number is 5, negative sample number is 5.

The formalized computation of Node Conductance is based on eigen-
decomposition, which scales to O(V3), V is the number of nodes. Using
DeepWalk with SGNS, the computational complexity per training instance is
O(nd + wd), where n is the number of negative samples, w is the window size
and d is the embedding dimension. The number of training instance is decided
by the settings of random walks. Usually it is O(V).

Table 1. Ranking correlation coefficient between the corresponding centralities and
NCpw, Node Conductance with window size 6 (computed by Eq. 8). Centralities include
Degree [1], NCs (Eq.5), Subgraph Centrality [7], Closeness Centrality [9], Network
Flow Betweenness [5], Betweenness [8], Eigenvector Centrality [4], PageRank value
[20], Clustering Coefficient [22].

Metrics Karate | Word | Football | Jazz | Celegans | Email | Polblog | Pgp
Degree 0.95 |0.98 0.51 0.98| 0.91 0.99 0.99 0.95
NCoo 0.93 0.98 0.41 0.98| 0.89 0.99 |- 0.95
Subgraph centrality 0.71 |0.91 0.48 0.85 0.66 0.87 |0.95 0.31
Closeness centrality 0.79 /0.87 |—0.10 0.84 0.45 0.88 |0.92 0.32
Network flow betweenness| 0.91 |0.94 0.01 0.82 0.81 0.96 |— 0.91
Betweenness 0.84 /0.89 |—0.04 0.70 0.77 0.89 0.89 0.81
Eigenvector centrality 0.64 |0.90 |—0.33 0.85 0.66 0.87 |0.95 0.30
PageRank 0.96 |0.98 0.48 0.97| 0.83 0.97 0.97 0.92
Clustering coefficient —0.45 |0.37 0.22 —0.33 | —0.65 0.33 /0.20 0.59

! https://radimrehurek.com/gensim.
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Fig. 1. Network of American football games. The color represents the ranking of nodes
produced by the metrics (Low value: red, medium value: light yellow, high value: blue).
(Color figure online)

5 Comparison to Other Centralities

Now that different measures are designed so as to capture the centrality of the
nodes in the network, it has been proved that strong correlations exist among
these measures [23]. We compute different centrality measures on several small
datasets?. NCo is computed by Eq.5. NCpw is computed by DeepWalk with
the window size 6. As presented in Table 1, we calculate their correlations by
Spearman’s rank correlation coefficient. NC, and Network Flow Betweenness are
not able to be computed on dataset polblog as the graph is disconnected. Apart
from the football dataset, Degree, NC,, and PageRank value show significant
relation with NCpw on all the rest datasets. Node Conductance is not sensitive
to window size on these datasets.

Table 2. The static network Table 3. Snapshots of the Flickr network.
datasets.

ss | Node Edge ss|Node Edge
1 1,487,058|11,800,425|2 1,493,635 11,860,309
3 1,766,734 /15,560,731 |4 |1,788,293|15,659,308

2 gs stands for the number of snapshot.

Datasets | Node | Edge | N, #|CC P
DBLP |317K|1IM |13K |0.63
Amazon |335K 926K | 75K |0.40
Youtube |1.1M |3.0M |8K |0.08

2 Number of communities.

b Clustering Coefficient.

2 http://www-personal.umich.edu/~mejn/netdata.


http://www-personal.umich.edu/~mejn/netdata

Node Conductance: A Scalable Node Centrality Measure on Big Networks 537

We visualize the special case, football network, in order to have an intuitive
sense of the properties of Degree, Betweenness, and Node Conductance (other
centralities are presented in the Supplementary Material). Moreover, we want
to shed more light on the reason why Node Conductance does not correlate
with Degree on this dataset. Figure 1 presents the football network. The color
represents the ranking of nodes produced by different metrics (Low value: red,
medium value: light yellow, high value: blue). The values produced by these four
metrics are normalized into range [0,1] respectively.

Comparing Fig. 1a and Fig. 1b with Fig. 1d, it seems that the result provided
by Node Conductance (window = 6) synthesizes the evaluations from Degree
and Betweenness. Node Conductance gives low value to nodes with low degree
(node 36, 42, 59) and high betweenness centrality (node 58, 80, 82). We are able
to have an intuitive understanding that Node Conductance captures both local
and global structure characteristics.

When the window size is bigger, the distribution of node colors in Fig. 1c
basically consistent with Fig.1d. Some clusters of nodes get lower values in
Fig. 1c because of the different levels of granularity being considered.

6 Application of Node Conductance

We employ Node Conductance computed by DeepWalk to both static network
and dynamic network to demonstrate its validity and efficiency. Node Conduc-
tance of different window size are all tested and size 6 is proved to be the best
choice. We try our best to calculate the baseline centralities accurately, while
some of them do not scale to the big network datasets.

Static Network with Ground-Truth Communities (Table2). We employ
the collaboration network of DBLP, Amazon product co-purchasing network,
and Youtube social network provided by SNAP3. In DBLP, two authors are
connected only if they are co-authors and the publication venue is considered
to be the ground-truth communities. DBLP has highly connected clusters and
consequently has the best Clustering Coefficient (CC). In Amazon network, an
edge means that two products are co-purchased frequently and the ground-truth
communities are the groups of products that are in the same category. Users
in Youtube social networks create or join into different groups on their own
interests, which can be seen as the ground-truth. The link between two users
represents their friend relationship. The CC of Youtube network is very poor.

Dynamic Network. Flickr network [17] between November 2nd, 2006 and May
18th, 2007. As shown in Table 3, there are altogether 4 snapshots during this
period. This unweighted and undirected network has about 300,000 new users
and over 3.8 million new edges.

3 http://snap.stanford.edu/data.
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Table 4. Running time (seconds) of Table 5. The Spearman ranking coef-

different global node centralities. ficient p of each centralities®.

Datasets | AP® [INCP |AB¢ |AE?|SC®|FB! Datasets|pnc | pD | PAB | PAE | PAP | PCC

DBLP 914 |985 |14268 |— - - DBLP [0.62|0.60/0.61|0.59|0.48-0.29
Amazon |941 |988 9504 |- - - Amazon 0.28/0.27/0.17/0.15|0.23|0.007
Youtube |2883 3464 | 168737 |— - - Youtube |0.26|0.240.23/0.21|0.20|0.22
2 approximate PageRank. 2Subscript of p stands for different

b Node Conductance. centralities. D: Degree. Other subscripts

c are the same as defined in Table 4.

approximate Betweenness.
d approximate Eigenvector Centrality.
¢ Subgraph Centrality.

f Network Flow Betweenness.

6.1 Time Cost

The configuration of our computer is: two Intel(R) Xeon(R) CPU E5-2620 at
2.00 GHz, 64 GB of RAM. Node Conductance is calculated by DeepWalk with
the setting m =80, | =40, w =6, and d =128, the same setting in [21]. As Node
Conductance is the by-product of DeepWalk, the actual running time of Node
Conductance is the same as DeepWalk. As presented in the beginning of the
section, Eigenvector centrality and PageRank are approximately calculated and
we set the error tolerance used to check convergence in power method itera-
tion to 1le—10. Betweenness are approximately calculated by randomly choosing
1000 pivots. More pivots requires more running time. Subgraph Centrality and
Network Flow Betweenness do not have corresponding approximations.

Time costs of some global centralities are listed in Table4. Approximate
Eigenvector, Subgraph Centrality and Network Flow Betweenness are not able
to finish calculating in a reasonable amount of time on these three datasets. Node
Conductance calculated by DeepWalk is as fast as the approximate PageRank
and costs much less time than approximate Betweenness. Comparing with the
existing global centralities, Node Conductance computed by DeepWalk is much
more scalable and capable to be performed on big datasets.

6.2 Finding Nodes Spanning Several Communities

We use Node Conductance to find nodes spanning several communities. Some-
times, it is called structural hole as well. Amazon, DBLP and Youtube datasets
provide the node affiliation and we count the number of communities each node
belongs to. In our experiments, nodes are ranked decreasingly by their centrality
values.



Node Conductance: A Scalable Node Centrality Measure on Big Networks 539

#(community) / 1000
#(community) / 1000

#(community) / 1000
#(community) / 1000

#(community) / 1000
#(community) / 1000

We first calculate the Spearman ranking coefficient between the ranks
produced by each centrality measure and the number of communities. The
error tolerance of approximate KEigenvector Centrality is set to be le—6.
Other settings are the same as .

the Sect.6.1. Results are shown = MMW

in Table 5. Node Conductance per-

forms the best and PageRank has ’

a poor performance. O O O T

We further explore the dlﬂ'er_ (a) Degree Centrality (b) Clustering Coefficient
ences between the rank of these
centralities and plot the communi- M :
ties numbers of nodes (y-axis) in ‘ R
the order of each centrality mea- B B
sure (x-axis). In order to smooth e st
the curve, we calculate the aver- () Bigenvector Gentrality (d) Betweenness
age number of communities node
belongs to for every 1000 nodes. \\»ww,w,\ \\\”\‘\1\
For example, point (z,y) denotes ‘ ‘
that nodes that are ranked from I— N
(1000z) to (1000(z + 1)) belong et et
to y communities on average. In (¢) PageRank () Node Conductance
Fig.2, all of the six mejﬁrlcs are able Fig.2. Number of communities the node
to reflect the decreasing trend of belongs to (Amazon dataset) versus node cen-

. . g

spanning communities number. It trality calculated by different measures. The
is obvious that Node Conductance tajls of the last two curves are marked as
provides the smoothest curve com- purple in order to emphasize the differences
paring with the other five metrics, between the curves.

which indicates its outstanding ability to capture node status from a structural
point of view. The consistency of performance on different datasets (please refer
to the Supplementary Material) demonstrates that Node Conductance is an
effective tool for graphs with different clustering coefficient.

Degree and PageRank seem to have very different performances as shown in
the Table 5, Fig.2. The ground-truth centrality is the number of communities
that each node belongs to, which means many nodes have the same central-
ity rank. Similarly, many nodes have the same degree too. However, under the
measurement of the other centralities, nodes have different centrality values and
ranks. Thus, degree has advantage to achieve higher ranking coefficient in Table 5
but performs bad as shown in Fig. 2. As for the curves of PageRank, the tails are
quite different from the curves of Node Conductance. In Fig. 2e, the tail does not
smooth. In other words, PageRank does not perform well for those less active
nodes and thus achieves a poor score in Table 5.

The calculation of Node Conductance is entirely based on the topology, while
node affiliation (communities) is completely determined by the fields and appli-
cations. Node affiliation is somehow reflected in the network topology and Node
Conductance has better ability to capture it.
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6.3 The Mechanism of Link Formation

In this experiment, we focus on
the mechanism of network growing.

It is well-known that the network
growth can be described by preferen- [ wwwo i

tial attachment process [3]. The prob-
ability of a node to get connected to a
new node is proportional to its degree. . )
We consider the Flickr network [17] Fig. 3. Preferential attachment.
expansion during Dec. 3rd, 2006 to Feb. 3rd, 2007. Note that the results are
similar if we observe other snapshots, and given space limitations, we only show
this expansion in the paper. Nodes in the first snapshot are ranked decreasingly
by their degree. We also count the newly created connections for every node.
Figure 3 presents strong evidence of preferential attachment. However, there exist
some peaks in the long tail of the curve and the peak should not be ignored as it
almost reaches 50 and shows up repeatedly. Figure 3b presents the relationship
between increasing degree and Node Conductance. Comparing the left parts of
these two curves, Node Conductance fails to capture the node with the biggest
degree change. On the other hand, Node Conductance curve is smoother and no
peak shows up in the long tail of the curve. Degree-based preferential attachment
applies to the high degree nodes, while for the nodes with fewer edges, this
experiment suggests that there is a new expression of preferential attachment—
the probability of a node to get connected to a new node is proportional to its
Node Conductance.

T oz o4 os os 1o 1z 14
rankingofnodes produced by a0e

(a) Degree (b) Node Conductance

7 Conclusion

In this paper, we propose a new node centrality, Node Conductance, measuring
the node influence from a global view. The intuition behind Node Conductance
is the probability of revisiting the target node in a random walk. We also rethink
the widely used network representation model, DeepWalk, and calculate Node
Conductance approximately by the dot product of the input and output vec-
tors. Experiments present the differences between Node Conductance and other
existing centralities. Node Conductance also show its effectiveness on mining
influential node on both static and dynamic network.
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