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Abstract—Community detection is a hot topic for researchers
in the fields including graph theory, social networks and bio-
logical networks. Generally speaking, a community refers to a
group of densely linked nodes in the network. Nodes usually have
more than one community label, indicating their multiple roles or
functions in the network. Unfortunately, existing solutions aiming
at overlapping-community-detection are not capable of scaling to
large-scale networks with millions of nodes and edges.

In this paper, we propose a fast overlapping-community-
detection algorithm — FOX. In the experiment on a network
with 3.9 millions nodes and 20 millions edges, the detection
finishes in 14 minutes and provides the most qualified results.
The second fastest algorithm, however, takes ten times longer
to run. As for another network with 22 millions nodes and 127
millions edges, our algorithm is the only one that can provide
an overlapping community detection result and it only takes 238
minutes. Our algorithm draws lessons from potential games, a
concept in game theory. We measure the closeness of a node to a
community by counting the number of triangles formed by the
node and two other nodes form the community. Potential games
ensure that the algorithm can reach convergence. We also extend
the exploitation of triangle to open-triangle, which enlarges the
scale of the detected communities.

Keywords-Community detection; Potential Games; Heuristic

I. INTRODUCTION

Community detection is a fundamental and important work.

Communities are groups of densely connected nodes in the

network. Birds of a feather flock together and nodes in the

same group may have certain characteristics in common in

different fields, while those characteristics sometimes are not

apparent to the researchers. Community detection gives the

researchers a chance to gain insight into the related field.

Overlapping communities allow nodes to belong to more than

one community. In a social network, it is well-understood

that people are naturally characterized by multiple commu-

nity memberships, for instance, family circles and workmate

circles.

However, no existing algorithm gives a fast resolution for

overlapping community detection on large-scale networks.

When the numbers of nodes and edges add up to several

millions, the algorithm [1]–[5] either can only detect a rather

small number of communities, or has to spend over a day

giving a seemingly satisfactory result as our experiments show.

Another problem is that most community detection algo-

rithms have no relation to a systematic theory of the emer-

gence of communities [4]. Algorithms based on modularity

optimization or dense subgraph detection exploit the structure

of the network and aim to maximize the value of a global or

local function (e.g. modularity [6], conductance [7]). They try

to define the patterns of community structure, but the fact is

that there is no acknowledged definition of community.
In this paper, we explore the problem of overlapping

community detection on big networks from the perspective

of community formation mechanisms. As we all know, the

emergence of community is the consequence of humans’

interactions. People have conflict and cooperation and tend to

be with the best match friends at any time. Each player decides

which community to join independently, but instead, the choice

is determined by other players’ choices. In mathematics, this

dynamic process can be modeled by Potential Games in

game theory. Furthermore, we find that there is a connection

between Potential Games and heuristic algorithms. On the

basis of Potential Games, we propose FOX (Fast Overlapping

Community Search) framework, which is a principle, neat

and adequate solution for community detection task. FOX is

capable to process both weighted and unweighted graphs. It

can also help improve the detection results provided by other

algorithms.
We conclude three main contributions of our research:

- We explore the connection between Potential Games
and heuristic algorithm and confirm that heuristic algo-

rithm is an adequate solution for overlapping-community-

detection task.

- We develop a heuristic function and its corresponding

approximation on the basis of existing works. The ap-

proximation can guarantee the efficiency and quality

of the detection results. Our algorithm is the fastest

overlapping-community-detection algorithm to the best of

our knowledge.

- Our algorithm can be used on both unweighted and

weighted big graph for community detection task. More-

over, it can also be used to improve other algorithms’

detection results.

II. RELATED WORK AND BACKGROUND

A. Overlapping Community Detection
Community detection is a growing field of interest in

many areas. Most researches focus on uncovering disjoint
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communities. And many disjoint community detection algo-

rithms are now available for large networks [8], [9]. But

for overlapping-community detection, more common in real

networks, the scalability of which is unsatisfactory. Most

overlapping-community-detection algorithms are based on

finding a pre-defined community structure or maximizing a

mathematical criterion. The problem is that both of these

two ways can’t reveal the process of community emergence.

And the algorithm quality and efficiency mainly rely on how

to define the community structure or the objective function.

Clique Percolation [10] treats adjacent cliques as communi-

ties. Generative models include Stochastic Block Model [2],

[11], [12] and Nonnegative Matrix Factorization (NMF) [1].

The major limitation of NMF is the high cost of time and

memory due to the matrix multiplication. Algorithms based

on expanding the community locally from the seed [13]–[15])

use a benefit function (modularity, conductance and etc.) to

decide which node will be absorbed into the communities.

They have a good performance in scalability, while on large-

scale network, the partition quality is disappointing.

Community is the product of human social activities. Indi-

viduals tend to be with people with similar interests. Everyone

independently choose the best fit groups of people to join.

The community emergence process can be seen as a Game as

described in Section I. Game theory is firstly associated with

the formation of community in [16]. Instead of optimizing

a mathematical criterion, the game-theory-based algorithms

are more natural and have relatively stable performance in

different kinds of networks [17]. But these algorithms are not

doing well on scalability [4], [18], [19].

B. Community Scoring Functions

As there is no standard definition of community, researchers

have different scoring functions to assess communities. In [7],

results show that Triangle Participation Ratio (TPR) performs

best in density, cohesiveness and clustering coefficient and

suits for heavily overlapped community.

In our algorithm, we use WCC (Weighted Community

Clustering) [20] instead of TPR. Actually, WCC is put forward

on the basis of TPR, not only taking the number of triangles

in one community into consideration, but also counting the

number of nodes that can compose a triangle. WCC is used

in many community detection algorithms [21]–[23]. Among

these algorithms, SCD [22] is a disjoint community detection

algorithm and shows great advantages on large-scale networks.

III. POTENTIAL GAME BASED SELF-ADAPTATION

We represent a social network by a weighted graph: we

consider nodes to be individuals and edges to be the positive

relationships (e.g. friendship, sharing the same hobby). The

community formation procedure fits very naturally into the

game-theoretic framework. Game players correspond to the

nodes and tend to join the best fit group, which means players

will always choose the strategy with the best payoff. Note that

the payoff to each player depends on the strategies chosen

by all players. Just like what we do in daily life, all nodes

in our model constantly update their community membership

according to the best responses (best-response dynamics). A

Nash equilibrium is a list of strategies, one for each player,

so that each player’s strategy is a best response to all the

others. Therefore, the Nash equilibrium corresponds to the best

community memberships.

Potential Game [24] is a special model in game theory,

in which it has been proved that the best-response dynamics
always converges to a Nash equilibrium when the payoff for

each player is related to a global payoff function [25]. To be

more specific for our model, every node’s judgement depends

on whether its movement will contribute to the closeness from

a global view.

Best-response dynamics has the same intuition as heuristics

does. The point is, if and only if the heuristic rule is related to

improve the whole partition, a heuristic algorithm is adequate

to solve the community formation problem.

A. Heuristic Function: WCC

WCC [20] is a metric about the closeness between a node

and a community. Given a graph G(V,E), a node x and a

community C,

WCC(x,C) =

{
t(x,C)
t(x,V )

· vt(x,V )
|C−{x}|+vt(x,V−C)

, if t(x, V ) > 0;

0, if t(x, V ) = 0.
(1)

where t(x,C) stands for the number of triangles that node x
closes with the nodes in C and vt(x,C) stands for the number

of nodes in C that close at least one triangle with node x and

another node in V . C-{x} stands for the remaining part of C
when taking out x. Together, the level of closeness between

node x and community C is denoted by WCC(x,C).
We expand this metric further for the sake of overlapping-

community detection. The WCC value of a community Ci is

the sum of its members’ WCC value.

WCC(Ci) =
∑

x∈Ci

WCC(x,Ci) (2)

For a community partition P={C1, C2, . . . , Ck},

WCC(P ) =
∑k

i=1
WCC(Ci) (3)

One node in P changes its community membership and the

new partition is P ′. We define the heuristic function Δ as

WCC(P ′)-WCC(P ).
We further develop the concept of open-triangle, which

is a structure composed of 3 nodes and 2 edges. Triangle

describes the condition that three people are mutual friends,

while open-triangle is the phenomenon that two strangers have

one common friend. In the following parts, s-FOX denote as

the algorithm using open-triangle.

B. Self-adaptation Strategies

During every iteration, nodes have 4 strategies of move-

ments: (1)do not move, (2)leave the community and be alone,

(3)transfer to another community and (4)stay and at the

same time join in another community. The last choice makes

the community overlapped. The benefit of every strategy is
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estimated by the heuristic function, and every node tends to

make the best choice to maximize the heuristic function Δ.

Next we will derive the payoff of the 4 strategies (denoted as

ΔS , ΔL, ΔT and ΔC respectively).

[Strategy 1] Stay and do not move: The partition doesn’t

change at all.

ΔS = WCC(P )−WCC(P ) = 0

[Strategy 2] Leave and be alone: Suppose the original

partition is P={C1, C2, . . . , Ck} and when node x leaves

its community Ck, the partition P ′={C1, C2, . . . , C
′
k, {x}},

where Ck=C ′k
⋃{x}

ΔL(x,Ck) = WCC(P ′)−WCC(P )

Especially when community Ck is a singleton community,

ΔL(x,Ck) = 0.

[Strategy 3] Transfer to another community: Suppose

that node x transfers from C1 to Ck, the original par-

tition is P={C1, C2, . . . , Ck} and the new partition is

P={C ′1, C2, . . . , C
′
k}, where C1=C ′1

⋃{x} and C ′k=Ck

⋃{x}.
This movement is actually a composite transformation of

2 steps. Step 1: node x leaves C1 and doesn’t join any

community, Pm={C ′1, C2, . . . , Ck, {x}}. And step 2: node x
join Ck, P ′={C ′1, C2, . . . , C

′
k}. We can easily figure out that

step 2 is an inverse transformation of Strategy 2.

ΔT = (WCC(P ′)−WCC(Pm)) + (WCC(Pm)−WCC(P ))

= ΔL(x,C1)−ΔL(x,Ck)

We denote the best transferred community as the community

which has the biggest ΔL(x,Ck). The WCC improvement of

this best transferring choice is ΔT (x,Cbest)
[Strategy 4] Do not move and at the same time join
in another community: Suppose that node x copies it-

self to Ck, P={C1, C2, . . . , Ck} and P ′={C1, C2, . . . , C
′
k},

where C ′k=Ck

⋃{x}. Also, this is a composite transforma-

tion. The intermediate state is Pm={C1, C2, . . . , Ck, {x}}.
Similarly, the WCC improvement of the best community is

ΔC(x,Cbest).

ΔC = (WCC(P ′)−WCC(Pm)) + (WCC(Pm)−WCC(P ))

= −ΔL(x,C
′
k) +WCC(x, {x}) = −ΔL(x,C

′
k)

For all of these 4 strategies, x will choose the one that can
maximize the payoff.

Strategy(x) = max(ΔS(x),ΔL(x),ΔT (x,Cbest),ΔC(x,Cbest))

Simply stated, in every iteration, if x is negative for its

community, it will be removed from the community anyway.

If x also hurts all of the other communities, it will be alone.

Otherwise x will transfer to the best suitable community. But

when x is beneficial to its community, it will stay there and

consider whether to join other communities which it can bring

the most benefit. Here, the benefit is the WCC improvement

namely the enhancement of connectedness.

IV. ALGORITHM

FOX and s-FOX are aiming at detecting communities of

unweighted or weighted communities by counting triangles

and open-triangles respectively. For simplicity, the following

discussion is based on unweighted graph.

A. Pre-treatment

To initialize the first partition, we employ local clustering
coefficient, which is well-matched to the main procedure of

FOX.

We first compute the CC of all nodes and rank them in

decreasing order. Next, for the top-ranked node, all of its

neighbors are marked as visited and added into a community.

Then in the unvisited node set, pick the top-ranked node and

its unvisited neighbors out to form a community. This work

will stop when all nodes have been visited.

B. Best response dynamics

Best response dynamics is the community formation

progress. From the analysis above, we can find that the

computation of ΔL(x,C) plays a significant role. Both ΔT

and ΔC are computed on the basis of ΔL. In order to

apply our algorithm to large-scale network, we propose an

approximation from a statistical standpoint and the complexity

decreases notably to O(n).

1) Counting triangles approximately: We assume that the

more edges between x and C, the more triangles between x
and C. Based on this assumption, we approximately calculate

the number of triangles by further assuming that: (1) in

a community, any two nodes are connected with the same

probability; (2) every edge closes at least one triangle in

densely overlapped network; (3) all nodes’ local clustering

coefficients have similar values. When node x is outside the

community C, we approximately calculate the number of

triangles as

t̂(x,C) =
(
dC

2

) · p (4)

t̂(x, V − C) =
(
dV−C

2

) · cc (5)

v̂t(x, V − C) = dV−C (6)

where V is the node set of the graph, p is the probability

that two random nodes in community C are connected, dC
is the number of edge between C and x and the clustering

coefficient of the graph is cc. When node x is a member of

C, the approximation is similar.

The approximation calculation of open-triangle is similar to

the calculation of triangles. Suppose that node x is outside the

community C and nodes y and z belong to C, there are two

types of open-triangles that x y z can form: z − x − y, and

x− y − z.

t̂s(x,C) =
(
dC

2

)
+ dC · (|C| − dC) · p (7)
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2) Classifying the nodes in C ′k into 2 types: Continuing

the analysis of Strategy 2, the difference between P and

P ′ is the departure of node x. Only node x and the nodes

in community Ck get a new WCC after this movement.

Therefore, when calculating the difference of WCC(P ), we

only have to calculate the WCC change of nodes in Ck

including x.

ΔL(x,Ck) =
∑

n∈C′
k

(WCC(n,C′k)−WCC(n,C′k
⋃
{x}))

−WCC(x,C′k
⋃
{x})

(8)

For all the nodes in C ′k, they can be divided into 2 categories,

node sets N and M . Nodes in N are the neighbors of node

x, and nodes in M are not. Assume that nodes and edges

density in every segment of the whole graph are homogeneous.

Segments include N , M and G-C ′k. Next, we can calculate the

WCC of nodes in N and M respectively to further simplify

Equation 8.

ΔL(x,Ck) =
∑

n∈N (WCC(n,C′k)−WCC(n,C′k
⋃
{x}))

+
∑

n∈M (WCC(n,C′k)−WCC(n,C′k
⋃
{x}))

−WCC(x,C′k
⋃
{x})

= |N | ·Δ(a) + |M | ·Δ(b)−WCC(x,C′k
⋃
{x})

Δ(a) denotes the average WCC difference of the nodes in

N when x leaves from Ck. Or a can just be seen as a random

node in N . Δ(b) is the average difference of nodes in M .

Δ(n) = WCC(n,C ′k)−WCC(n,C ′k
⋃
{x})

Next, we discuss these 3 kinds of nodes, nodes in N , nodes

in M and node x, respectively. The statistics we need are

- din: the number of edges between x and Ck

- dout: the number of edges between x and G-Ck

- pin: the probability that two nodes in Ck are connected

by an edge

- pext: the clustering coefficient of the graph

- q: the average number of edges between nodes in Ck and

nodes in G-C ′k-{x}
- S: the size of C ′k
- p: the average degree of the whole graph

When one node finishes implementing its best strategy, these

statistics also need to be updated. The computation complexity

is O(d), where d is the average degree.

With the help of these statistics and Equation 4 5 6, we can

approximately calculate Equation 1 and the value of ΔL(x,C).
The specific derivation is in Appendix B.

Δ(a) = (din−1)pin

0.5(S−1)(S−2)p3
in+(din−1)pin+q(S−1)pinpext+0.5S(S−1)pext+doutpext

(S−1)pin+1+q
S+q

Δ(b) = − 0.5(S−1)(S−2)p3
in

0.5(S−1)(S−2)p3
in+q(q−1)pext+q(S−1)pinpext

(S−1)pin+q
(S+q)(S−1+q)

WCC(x,C ′k
⋃{x}) = − (din(din−1)pin)(din+dout)

(din(din−1)pin)+dout(dout−1)pext

1
S+dout

C. Post-treatment

Nodes move in turns and this will inevitably bring a

problem of community connectivity. We are curious that this

problem isn’t mentioned in [4], [19], [22]. We put forward

two strategies coping with the problem. First is the order of

nodes. Nodes with higher degree move first, as they are more

influential . Second, we conduct a connectivity analysis after

the algorithm all the unconnected communities will be marked.

All the nodes in unconnected communities will then choose

the best community, which must be connected, to join into.

Some small communities may be entirely included in some

bigger communities. This kind of small community is ignored

in the final partition result.

D. Is the Approximation Reasonable?

To prove that our approximation is reasonable, we also

develop an algorithm, FOX-naive, in which ΔL(x,Ck) is

precisely calculated. The termination criteria of FOX-naive

and FOX are also different. In FOX-naive, best response

dynamics is perfectly performed, and at last all nodes satisfy

with their situations and choose to stay in their communities.

But in FOX, the approximation is not precise enough to reach

the stable condition as FOX-naive does. In FOX, after each

iteration, we compute the exact value of potential function

WCC(P ). When the difference between the WCC(P ) of

two iterations is less than a threshold t, the algorithm stops.

In Fig. 1 and Fig. 2, the experiment on three small datasets, we

find that there are no obvious differences between the results

provided by FOX-naive and FOX.

V. EXPERIMENTS

A. Experimental set-up

We test our algorithm on two types of datasets: networks

with ground-truth and real large-scale networks, as given in

Table I. The configuration of our computer is: two Intel(R)

Xeon(R) CPU E5-2620 at 2.00GHz, 64GB of RAM. In FOX

and s-FOX, the threshold t is set to 0.1%.

1) Datasets: Network with ground-truth. Most

overlapping-detection algorithms use the benchmark datasets

provided by SNAP [26]. We employ the collaboration

network of DBLP, Amazon product co-purchasing network,

and Youtube social network.

Real large-scale networks. We analyze 2 big networks:

a mobile communication network and the Google+ mutual

followed relation network.

The mobile communication network is a phone-call record

of a city, including 3.9 million users and lasting for 3 months.

We draw an edge between 2 nodes only if the two users call

each other more than one time. Google+ network is much

bigger. The authors of [27] collected a weakly connected

component of Google+, which includes over 70% of all

Google+ users from Jul. 2011 to Oct. 2011. We only reserve

the mutual followed relationships in the raw data.
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TABLE I
BASIC INFORMATION OF OUR DATASETS. N : NUMBER OF NODES. E: NUMBER OF EDGES. D: AVERAGE DEGREE. Dmax : MAXIMUM DEGREE. C :

MAXIMAL CONNECTED GRAPH COVERAGE. Nc : NUMBER OF COMMUNITIES. CC : CLUSTERING COEFFICIENT. M : MILLION. K : THOUSAND.

Data Sets N E D Dmax C Nc CC Node Edge Community

DBLP 317K 1M 6.62 343 100% 13K 0.63 author co-author publication venue
Amazon 335K 926K 5.53 549 100% 75K 0.40 product co-purchased products category
Youtube 1.1M 3.0M 5.27 28754 100% 8K 0.08 user follow interest group

Phone-call 3.9M 20.5M 10.25 438 94% - 0.12 user make phone call -
Google+ 22.5M 127.3M 9.98 7347 94% - 0.24 user follow -

2) Baseline: Compared baseline algorithms including

disjoint-community-detection algorithms (Louvain [13], In-

fomap [3], SCD [22]) and overlapping-community-detection

algorithms (SVI [2], GAME [4], BigCLAM [1], OSLOM [14],

FOX-naive in Sec. IV-D).

3) Metrics: As for the datasets with ground-truth, the main

goal of the experiment is to evaluate the similarity between

the ground-truth and the detected result. We use two evaluation

metrics: Average F1-Score (F1) [1] and Normalized Mutual
Information (NMI) [5]. Both of these two values are in [0,1],

with 1 standing for perfect matching.

The phone-call record network and Google+ network have

no ground-truth communities. We evaluate the quality of the

detected communities with the following metrics.

Density is the average probability of the nodes in the same

community being connected.

wc/wi is proposed to qualify community partition of

phone-call record network [28].We define the edge weight w
as the cumulative time of the phone calls between 2 users. wc

denotes the average edge weight of the edges inside the com-

munity, and wi denotes the average weight of inter-community

edges of the community. The higher the ratio of wc/wi is,

the more intensive the communication within a community is,

compared with the inter-community communication.

Modularity is adapted to measuring overlapping commu-

nity by [29].

Qov =
1

2m

∑
c∈C

∑
i,j∈V [rijcAij − sickisjckj

2m
]

Please refer to [29] for the detail information about this metric.

B. Experiments using ground-truth

1) Comparing with overlapping-community-detection al-
gorithm: Fig. 1 and Fig. 2 present the performance of our two

algorithms (i.e. FOX and s-FOX), FOX-naive and three base-

line algorithms on three networks with ground-truth. Game run

for over 3 days on Amazon dataset and achieved less than 5%

of the total progress, so we terminated it and do not include its

results in these two figures. FOX and FOX-naive perform very

similar on these three datasets under NMI and F1 score. But,

take the experiment on the Youtube dataset as an example,

FOX-naive took 3 hours to finish the detection, while FOX

only took 8 mins. It shows that FOX achieves encouraging

efficiency improvement without sacrificing the effectiveness

of community detection, which demonstrates the reasonability

of our approximation in FOX. s-FOX and OSLOM get close

scores, following FOX. Communities detected by s-FOX is

bigger than that by FOX, as it contains more periphery nodes.

So the results are not as good as FOX does. We have no

acknowledged definitions of communities and the boundaries

of communities are actually blurred. SVI and BigCLAM

require the number of communities as input. We tend to set

it as the number of ground-truth communities. But it’s too

large for SVI to finish the detection task. Therefore, we set

the community number to 1000 for SVI to finish the detection.

Fig. 1. NMI with ground-truth

Fig. 2. F1-score with ground-truth

C. Experiments on big networks

There are a variety of problems for the compared methods

to run on big networks, so that we have to make some

compromise. SVI cannot handle the phone-call dataset because

of its huge memory consumption. Game, as stated before,

takes too much time to finish. BigCLAM can decide how

many communities to detect automatically. But in this mode,

BigCLAM cannot provide a result in three days. We set several

community numbers for testing, and 150,000 is the biggest one

that BigCLAM can finish detecting with an acceptable running

time (38 hours).
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TABLE II
EVALUATION RESULTS ON PHONE-CALL AND GOOGLE+ DATASETS

Dataset phone-call Google+

Algorithm time cost Density wc/wi Qov time cost Density Qov

BigCLAM 38 hr. 0.028 0.604 1.401 - - -
OSLOM 194 min 0.442 1.845 0.621 - - -

FOX 14 min 0.607 2.920 0.758 238 min 0.529 1.044
s-FOX 20 min 0.325 19.434 0.936 260 min 0.328 1.334

Table II shows the algorithm performances on two datasets.

FOX is the fastest overlapping-community-detection algo-

rithm. Although FOX and s-FOX do not take edge weight into

account, their detection results are still better than BigCLAM

and OSLOM on wc/wi. In the communities provided by

OSLOM, the percentage of triangle sums up to 13.1%. How-

ever, in the communities provided by s-FOX the percentage

is 2.5%. Triangle contributes a lot to edge density, as the

edge density of triangle always equals 1. BigCLAM performs

brilliantly in Qov and ours is the second best. But BigCLAM

performs poorly in the other aspects.

The volume of Google+ data is about six times more than

the volume of phone-call record. Our algorithms finish the de-

tection work for about 4 hours, which is the only overlapping-

community-detection algorithm that can accomplish this work.

OSLOM aborted when an exception occurred after running

over 3 days. As shown in Table I, the Google+ network has the

similar average degree as the phone-call network has, which

shows Google+ is a quite dense network with large number

of nodes, thus it is a very challenging dataset for community

detection algorithms. As shown in Table II, our algorithms’

the run time for Google+ is about fifteen times more than that

for the phone-call data.

VI. CONCLUSION

In this paper, a fast overlapping-community-detection algo-

rithm is proposed. When the scale of data is over 10 millions,

it can provide a reasonable community partition within hours,

which is the best performance on both accuracy and time-

cost. This heuristic algorithm learns from potential games in

game theory. Moreover, the approximation of the heuristic

function ensures the quality of community and the speed of the

detection. Our algorithm is also appropriate to the weighted

graph, only if the edge weight is proportional to the closeness

of relationship. For more details about this work, please refer

to the full version1.

ACKNOWLEDGMENT

This work is supported by 973 Program with Grant No.

2014CB340405, NSFC with Grant No. 61532001 and No.

61370054, and MOE-RCOE with Grant No. 2016ZD201. We

thank the anonymous reviewers for their valuable comments.

REFERENCES

[1] J. Yang and J. Leskovec, “Overlapping community detection at scale: A
nonnegative matrix factorization approach,” in WSDM’13, pp. 587–596.

1http://www.cis.pku.edu.cn/faculty/system/zhangyan/papers/fox full.pdf

[2] P. K. Gopalan and D. M. Blei, “Efficient discovery of overlapping
communities in massive networks,” PNAS, vol. 110, no. 36, pp. 14 534–
14 539, 2013.

[3] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” PNAS, vol. 105, no. 4, pp. 1118–
1123, 2008.

[4] W. Chen, Z. Liu, X. Sun, and Y. Wang, “A game-theoretic framework to
identify overlapping communities in social networks,” DMKD, vol. 21,
no. 2, pp. 224–240, 2010.

[5] A. Lancichinetti, S. Fortunato, and J. Kertész, “Detecting the overlap-
ping and hierarchical community structure in complex networks,” New
Journal of Physics, vol. 11, no. 3, p. 033015, 2009.

[6] M. E. Newman, “Modularity and community structure in networks,”
PNAS, vol. 103, no. 23, pp. 8577–8582, 2006.

[7] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” vol. 42, no. 1, 2015, pp. 181–213.

[8] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search
in large networks,” VLDB’15, pp. 509–520.

[9] J. Shao, Z. Han, Q. Yang, and T. Zhou, “Community detection based
on distance dynamics,” in KDD’15, pp. 1075–1084.

[10] B. Adamcsek, G. Palla, I. J. Farkas, I. Derényi, and T. Vicsek, “Cfinder:
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[18] L. Zhou, P. Yang, K. Lü, L. Wang, and H. Chen, “A fast approach for
detecting overlapping communities in social networks based on game
theory,” in Data Science. Springer, 2015, pp. 62–73.

[19] R. Narayanam and Y. Narahari, “A game theory inspired, decentralized,
local information based algorithm for community detection in social
graphs,” in ICPR’12, pp. 1072–1075.
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