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ABSTRACT
Almost all the existing network embedding methods learn to map
the node IDs to their corresponding node embeddings. This de-
sign principle, however, hinders the existing methods from being
applied in real cases. Node ID is not generalizable and, thus, the
existing methods have to pay great effort in cold-start problem. The
heterogeneous network usually requires extra work to encode node
types, as node type is not able to be identified by node ID. Node ID
carries rare information, resulting in the criticism that the existing
methods are not robust to noise. To address this issue, we introduce
Compositional Network Embedding, a general inductive network rep-
resentation learning framework that generates node embeddings
by combining node features based on the “principle of composition-
ally”. Instead of directly optimizing an embedding lookup based
on arbitrary node IDs, we learn a composition function that infers
node embeddings by combining the corresponding node attribute
embeddings through a graph-based loss. For evaluation, we conduct
the experiments on link prediction under three different settings.
The results verified the effectiveness and generalization ability of
compositional network embeddings, especially on unseen nodes.
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• Computing methodologies → Learning latent representa-
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1 INTRODUCTION
Graph structure plays a key role in information retrieval, e.g., OSN
and e-commerce. Recently, there has been a surge of work to rep-
resent nodes as low-dimensional dense vectors, called Network
Embedding, in order to analyze the graph-structured data.

Background and related work. As the downstream machine
learning tasks usually involve the predictions relevant to the nodes,
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the existing methods usually map node IDs into a latent space by a
lookup table. However, we argue that many challenges the existing
methods struggle with may stem from this design philosophy.

First of all, node ID is not generalizable. Therefore, most of the
existing methods cannot infer the embeddings of the unseen nodes
that do not appear in the training phase (e.g., cold-start items in
recommendation system). Dynamic network embeddings generate
unseen node embeddings in incremental [5] or inductive way [8].
However, both of these two kinds of methods require the unseen
nodes have connections to the observed network, which is not
always practical or true. The second challenge is particularly for the
heterogeneous network (e.g., a customer-product-brand network).
Node IDs do not carry node types inherently. Consequently, it is
inappropriate for the embedding methods to learn the mapping
function between node IDs and types. A conventional way for
heterogeneous network embedding is to project different types of
nodes to different latent spaces. This kind of methods [1, 4, 16] have
to put great effort in aligning embeddings of different spaces. The
last one is the balance between network topology sensitivity and
robustness. In the real cases, the graph is always with noise (e.g., a
Real Madrid fan clicked a FC Barcelona team jersey is a spurious
edge). However, most of the existing methods represent edge by a
pair of node IDs, giving little hint about the edge itself. Therefore,
robustness is hardly discussed in the network embedding fields
[3]. The methods based on random-walk sampling [7] are not able
to distinguish noises. In addition, the node embeddings relying
on aggregating neighborhood attributes [8, 17] might be seriously
affected by the wrong edges [3].

In this paper, we draw inspiration from the “principle of com-
positionally” [6], an influential theory in NLP area, in order to
inherently tackle the above problems. It states the meaning of a
complex expression is determined by themeanings of its constituent
expressions and the rules used to combine them. Instead of learn-
ing a distinct embedding vector for each node ID, the proposed
model, CNE, trains a composition function that learns to derive the
node embedding by combining the corresponding node attribute
embeddings (rather than the neighborhood embeddings as GNNs
[8, 17]). The attribute embeddings are shared across all nodes in the
network. Specifically, CNE learns the attribute embeddings and the
composition function by considering the node proximity indicating
from the graph, which is flexibly captured by random walks. The
node embeddings, as the intermediate results of the framework, are
encouraged to be more similar by the unsupervised graph-based
loss function when the nodes are in close proximity.

CNE generate embeddings for the unseen nodes by applying the
learned composition function to their attributes. Different types
of nodes correspond to different node attributes and composition
methods. The type differences are naturally captured by CNE. CNE
is also not sensitive to the edges that related to two nodes with
rarely co-occurred attributes.
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Figure 1: Compositional network embedding framework.
For each node v and its neighbor u, we randomly sample K
negative node ū. The objective of our framework is to distin-
guish the positive nodeu from the negative node ū using the
embeddings derived from their internal attributes.

We evaluate our models on link prediction task under different
settings, including the prediction of missing edges, edges of unseen
nodes, and multi-node-type edges. The results demonstrate that
CNE possesses higher expressive capability, stronger generalization
capacity, and more flexibility on heterogeneous network.

2 COMPOSITIONAL NETWORK EMBEDDING
In this section, we will present our idea of compositional network
embedding (CNE) framework. The core idea behind our approach
is that we learn how to derive the node embeddings from the em-
beddings of the features they carried. As Fig. 1 illustrated, CNE
framework contains two key parts: (i) composition function that
generates node embeddings from their internal attributes; (ii) unsu-
pervised graph-based loss function for learning the parameters of
composition function and attribute embeddings.

2.1 Embedding Composition
As Fig. 1 illustrated, the embedding generation process for a node
vi is very straightforward, applying the composition function ϕ to
the node vi ’s features embeddings Ai=[a

(1)
i , . . . ,a

(ni )
i ] as:

vi = ϕ(Ai ) = ϕ
(
a(1)i , . . . ,a

(ni )
i

)
where, a(j)i ∈ Rd is the embedding of node vi ’s attributes a(j)i , d is
the dimensionality of a(j)i , ni is the length of vi ’s features. Here,
we model the composition function ϕ as a neural network. In this
context, the composition function is equivalent to an encoder. Thus,
we also use encoder to refer to the composition function later. It is
worth emphasizing that feature a and its embedding a are shared
across all nodes in the network. In this way, after the model has
been trained and the parameters are fixed, we can generate the
embedding for an unseen node by feeding these shared feature
embeddings through the composition function ϕ.

2.2 Composition Function (Encoder)
CNE is a quite general framework for network embedding. Here,
the “generality” is reflected in the choices for feature design and
composition function design. For example, we can use text (e.g.,
product title) as the feature for the networks like product network,
or image as the feature for Flickr image relationships. According to
the different features, we can design the corresponding encoders,

from simply concatenate, mean, and sum operator to complex mod-
els like GRU and CNN.

In this paper, without loss of generality, we mainly focus on
the network with text features to introduce the framework for the
sake of simplicity. Here, we use an RNN encoder with GRU as
composition function ϕ to encode text features. The last hidden
state are used as the representations of the node featuresAi , which
we also treat as the node embedding of node vi . While we use GRU
here, any other types of encoder can be used so long as we can
back-propagate through it.

2.3 Learning The Parameters of CNE
In order to learn useful and predictive embeddings in an unsuper-
vised way, we apply a graph-based loss to the output node embed-
dings, and tune the parameters via stochastic gradient descent. The
graph-based loss function encourages nearby nodes to have similar
embeddings, while enforcing the embeddings of disparate nodes
are highly dissimilar. Specifically, CNE is trained end-to-end in a
siamese framework, as illustrated in Fig. 1. Formally, for nodev and
its neighbor u∈N(v) (N(v) is the neighbor set for v), we define the
max-margin (i.e., hinge) loss function [2, 12] as:

L(v,u) =
K∑
k=1

max
(
0,m − δ (v,u) + δ (v, ūk )

)
(1)

where ūk is a negative sample randomly sampled from the whole
node set V , K is the number of negative samples;m is the margin
between the the positive node pairs and the negative node pairs,
usually set as 1; δ is the score function to measure the similarity
between two nodes, we define as:

δ (v,u) = cos(v,u) = cos
(
ϕ1(Av ),ϕ2(Au )

)
where, ϕ1 and ϕ2 are encoders for node v and u respectively.

Instead of getting the vectorv (andu) via an embedding look-up,
CNE generates them by combining the feature embedding carried
with nodev (andu). The compositional embeddingmakes it possible
to interact between network topology and feature similarity.

Intuitively, the goal of the max-margin objective is to rank the
correct neighbor u of node v higher than any other random node ū
with a marginm. Importantly, other loss functions (e.g., likelihood
objective in DeepWalk) are also valid in our framework. Here, we
choose hinge loss for its better performance in our experiments.
It is worth noting that CNE can also be trained in a supervised
manner, by simply replacing (or augmenting) the unsupervised loss
(Eq. 1) with a task-specific objective.

Neighborhood definition. As mentioned in the loss function,
the neighborhood definition is a key part in the training stage. In
this paper, we define the neighborhood based on random walks as
the same in DeepWalk for its effectiveness and efficiency. Specifi-
cally, we first start truncated random walks with length l at each
node. After that, the neighbors of node v can be defined as the set
of nodes within a window sizew in each random walk sequence.

2.4 CNE for Various Kinds of Networks
As we presented above, CNE is a general framework for network
representation learning. In CNE, node embeddings are mainly de-
termined by the nodes’ attributes and the encoders (i.e., models and
parameters). Here, we will discuss how to apply CNE to various
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kinds of networks by adjusting the setting of node attributes and
encoders accordingly.

Directed network. In this case, edge direction is supposed to
be preserved. For this purpose, we learn two encodings, in-degree
encoder ϕ1 and out-degree encoder ϕ2, per node in order to rightly
predict the edge directionality.

Heterogeneous network with multiple node types. In this
case, different types of nodes usually carry with features from dif-
ferent fields. Item attributes, for instance, seem to be completely
different from the user demographic characteristics in recommen-
dation field. CNE is naturally capable of mapping different types
of nodes to the same low-dimension space. We can simply employ
different models as encoders according to the types of nodes.

3 EXPERIMENTS
In this section, we test the performance on three sub-tasks of link
prediction, to demonstrate the model’s ability and flexibility on
both homogeneous and heterogeneous network.

Baselines To verify the effectiveness of our proposed model, we
compare it with several strong baselines, including:
• SGNS [13]. It represents the node as the sum of the corresponding
word embeddings which are learned by applying SGNS to the
text sequences generated from node features.

• DeepWalk [15]. It derives the node embeddings by combining
random walks and Skip-Gram model.

• CANE [18]: It learns context-aware embeddings for nodes with
mutual attention mechanism and associated text information.

• TriDNR [14]. It learns node embeddings by jointly modeling the
network structure, node-content, label-content correspondence.

• GraphSAGE [8]. It is an inductive model that generates node
embeddings by aggregating features from a node’s neighborhood.
Parameters SettingCNE is trained using Adam [11] with initial

learning rate of 0.0008 and batch size of 256. For fair comparison,
all baselines are with the same random-walk relevant settings as
our proposed model. The node embedding dimension of all models
is set to 512. For all models that leverage text features, we build
a vocabulary of top 40,000 words and learn the word embeddings
from scratch. For GraphSAGE, we use mean aggregator and train
word vectors trained by SGNS. For models based on random walks
(e.g., DeepWalk, TriDNR, and CNE), we set the length of truncated
random walks as l=20, set window sizew=4, and randomly sample
K=4 negative nodes for each positive node pair.

Task and Evaluation MetricsWe use the link prediction (LP)
task to evaluate the ability of our proposed model under different
settings. We randomly remove a portion of existing edges from the
network and use the left network to train each network embedding
model. For testing, we randomly choose one thousand nodes from
the network and use the learned node embeddings to predict the
unobserved links. Intuitively, a larger similarity, e.g., the cosine
similarity, implies that the two nodes may have a higher propensity
to be linked. In this way, we can employ Precision@k and Recall@k
to evaluate the LP performance.

3.1 Task 1: LP on Homogeneous Network
This task is to validate that CNE possesses higher representation
power although the network is incomplete.

Table 1: Precision of different training set size (Task 1).
Method 10% 30% 50% 70% 90%

P@10 P@100 P@10 P@100 P@10 P@100 P@10 P@100 P@10 P@100
SGNS 0.131 0.036 0.132 0.036 0.131 0.036 0.133 0.037 0.134 0.037
DeepWalk 0.208 0.105 0.220 0.117 0.237 0.123 0.237 0.123 0.244 0.125
TriDNR 0.190 0.062 0.203 0.072 0.215 0.078 0.213 0.082 0.219 0.086
CANE 0.315 0.130 0.320 0.133 0.328 0.133 0.315 0.130 0.316 0.131
GraphSAGE 0.216 0.086 0.252 0.111 0.263 0.120 0.261 0.123 0.236 0.120
CNE 0.374 0.155 0.369 0.157 0.389 0.161 0.390 0.166 0.414 0.174

Table 2: Precision of unseen test nodes (Task 2).

Method 10% 30% 50%
P@10 P@100 P@10 P@100 P@10 P@100

SGNS 0.016 0.003 0.016 0.003 0.016 0.003
TriDNR 0.019 0.003 0.021 0.004 0.030 0.005
CNE 0.034 0.008 0.039 0.009 0.042 0.009

We use Amazon Baby category dataset [9], consisting of 71,317
item’s metadata. The homogeneous network is constructed from
co-view relations, resulting in an item graph with 47,185 nodes and
1,166,828 edges. The portion of removed edges is varied between
10% and 90%. We treat the product title as node feature.

Results As shown in Table 1, CNE achieves much better scores
than all the baselines. Note that DeepWalk and CANE require that
all nodes in the graph are present during training of the embeddings.
For fairness of comparison, we only use the nodes presented in the
training network to construct the test set.

Importance of network topology. It is a little surprising that
DeepWalk is a strong baseline in our experiments, indicating that
structure provides rich information for link prediction. SGNS is
based on node features solely, getting the word similarity only
from word co-occurrence statistics. The gaps between CNE and
SGNS suggest that network topology can improve the attribute
embeddings for network embedding. This result is in consistent
with the finding in [10].

Importance of jointly-training topology and attributes. As
node attributes can alleviate the data sparsity problem to some ex-
tent, they do enhance the structure-based embeddings when being
utilized in a reasonable way. Comparing with DeepWalk, the results
show that models leveraged nodes’ attributes (e.g., CANE and CNE)
can achieve better performances, especially on small training set.
Although these methods take advantage of the nodes’ attributes,
they choose different ways. TriDNR and CANE all optimize the
attribute embeddings indirectly through the node embeddings (The
former uses a shadow model and the latter uses deep CNN); while
GraphSAGE uses a fixed pre-trained attribute embeddings. The
results show that our proposed CNE outperforms these baselines
with a significant gap. This indicates that directly optimizing the
node attribute embeddings and the encoders in an end-to-end way
can act as a powerful form of regularization to improve the perfor-
mances. In addition, comparing results from different groups, it is
easy to find that CNE is more stable than other baselines, improving
consistently along with the increase of the training set.

3.2 Task 2: LP for Unseen Nodes
This task is to test the ability of CNE on generating the embedding
for unseen nodes. We use the same experimental setting as Task 1
except for the choice of test set. In this task, we focus on the nodes
that did not appeared in the training set. GraphSAGE, DeepWalk,
and CANE are not available for this task as they can not calculate the
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Figure 2: The distribution of the similarity ranks of the sub-
sequently clicked item.

node embeddings without nodes structural information. Therefore,
only the results of the rest baselines are presented in Table 2. In this
task, we only conduct the experiments on networks with portion
of training edges varied from 10% to 50% since keeping more edges
will not be able to generate enough unseen nodes for test.

Results Table 2 includes the comparison between different base-
lines. At most of time, CNE is the best one. CNE encodes the net-
work structure by feature embeddings and encoders, while TriDNR
separately models the structural and semantic embeddings. When
TriDNR is without structural information, the representation power
of the semantic embeddings is too weak to accomplish link predic-
tion. CNE on the contrary does not suffer from such trouble as long
as it captures sufficient connections between network structure
and semantic distances. Meanwhile, in the training of TriDNR, the
word embeddings interact with network topology. Thus, it outper-
forms SGNS, whose word embedding is based on the context (word
co-occurrence statistics). Note that Task 2 is much harder than Task
1, as the unseen nodes have quite few edges.

3.3 Task 3: LP on Multi-node-type Network
This task is designed to validate that CNE is pretty flexible to model
the network of multiple node types. In this experiment, we collect
users’ behavior sequences from TaoBao, a popular online shopping
website. The task is to predict a user’s subsequent behavior (n+1)
given the past n behaviors. Baselines need a homogeneous network
and we construct a item graph by connecting two items if they are
viewed in the same session. The network consists of 8744 nodes
and 29,976 edges. All the baselines provide a node embedding for
each item and the behavior sequence is represented by a record
vector by adding n items embeddings up. Meanwhile, we construct
a heterogeneous network of two kinds of nodes, user and item.
Each user node is associated with n item viewing records within a
session. CNE models the user node by n GRU encoders and produce
the user embedding (record vector) by adding up the last hidden
layer of n encoders. In our experiments, we let n equal 4.

Compared with the above tasks, Task 3 is more challenging
as each record only corresponds to one correct answer, the most
subsequent item. We calculate the cosine similarity between the
candidate items’ vector and the record vector, ranking the candi-
dates in the descending order. Note that the record products are

Table 3: A user click record and the top ranked products pro-
vided by each method. Words of similar meaning are in the
same color ( large size , casual , feminine, hot weather)

Rank Product Title

Click Record
1 Spring green loose mid-sleeve casual T-shirt.
2 Pierced lace off shoulder 3/4 sleeve loose blouse.
3 Plus size floral printed slimming princess dresses.

DeepWalk
1 Cotton plain loose white t-shirt.
2 Spring and summer outlet high-waist shorts.
3 Ethnic style Thailand Napal summer holiday long dress.

CANE
1 Original design fashion loose hip pants.
2 Ethnic style Thailand Napal summer holiday long dress.
3 Summer sleeveless wrinkled dress.

TriDNR
1 Puff sleeve elegant floral printed blouse.
2 Extra size slimming pierced long scarf wrap shawl.
3 Spring and summer sleeveless casual jumpsuits.

GraphSAGE
1 Korean summer beautiful dress.
2 Hong-kong embroidery dress.
3 Korean summer fashion v-neck hoodie.

CNE
1 Summer flower figure-flattering princess dress.
2 Slimming cold shoulder empire waist fairy dress.
3 Pink colorful dotted silk long-sleeve blouse.

filtered out from the candidate. We test 1000 users’ records and
count the positions of the correct answers in the 1000 ordered lists.

Results The distribution of the similarity ranks of the correct
answers are presented in Fig.2. CNE tends to place the correct
answer in the top three positions, and DeepWalk tends to place
the correct answer in little bit farther positions. Meanwhile, it can
not be ignored that a bit of correct answers appear in much farther
positions provided by CNE. Besides, the other baselines that utilize
node attributes also have the similar phenomenon. The reason is
that a lot of products with similar attributes but long geodesic
distances may be ranked in the front of the list. GraphSAGE, CANE,
and TriDNR have very poor performances on this task. The text
feature seems to badly confuse their predictions.

Case Study We also check the items in the top positions cal-
culated by different methods in Table 3. The first 3 lines are the
product titles in the click records and the following items are rec-
ommended by different methods. The record indicates that the user
aims at large size, casual, feminine clothes in hot weather. The top
ranked items provided by the baselines only have partial features
and most of them are identical words. Compared with the record
products, products recommended by CNE are with semantically
similar titles although the words are different. This case shows
that CNE learns to capture the feature relevance and is capable of
predict the users’ interests.

4 CONCLUSION
In this paper, we open a new frontier in network embedding by
introducing the “principle of compositionally” to node embeddings.
To address the main limitations of the existing approaches, we pro-
posed a novel approach that can efficiently generate embeddings
for unseen nodes by combining their internal attributes. Experi-
ments demonstrate the effectiveness and generalization ability of
compositional network embeddings.
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